Cargando…
82. A Machine Learning Approach to Predicting Secondary Revision Procedures in Post-mastectomy Reconstruction Patients
Autores principales: | Chen, Yunchan, Lu Wang, Marcos, Black, Grant G., Bernstein, Jaime L., Chinta, Malini, Otterburn, David M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10194636/ http://dx.doi.org/10.1097/01.GOX.0000937920.47603.25 |
Ejemplares similares
-
21. A Tale of Two Surgeries: Predicting the Need for Secondary Revision Procedures after Breast Reconstruction Using Machine Learning
por: Chen, Yunchan, et al.
Publicado: (2023) -
SP32. Predicting The “Crunch”: Capsular Contraction Prediction in Two-stage Breast Reconstruction Using Neural Network
por: Chen, Yunchan, et al.
Publicado: (2023) -
D88. A Friend or Foe? Evaluating Mesh Usage, Implant Location, and the Timeline of Capsular Contracture Development
por: Chen, Yunchan, et al.
Publicado: (2023) -
D108. Surviving Immediate Breast Reconstruction: A Multi-institutional Propensity Score Matched Analysis of Implants and Flaps After Mastectomy
por: Chen, Yunchan, et al.
Publicado: (2023) -
134. Roadblocks to Reconstruction: A Deep Dive into Autologous Breast Reconstruction Trends in New York City
por: Chen, Yunchan, et al.
Publicado: (2023)