Cargando…

IMPA2 blocks cervical cancer cell apoptosis and induces paclitaxel resistance through p53-mediated AIFM2 regulation: IMPA2 blocks cervical cancer cell apoptosis

Cervical cancer continues to be a concern, and the prognosis of locally advanced cervical cancer remains poor. IMPA2 was previously identified as a potential oncogene and regulator of tumor apoptosis. In this study, we aim to further elucidate the underlying mechanisms of IMPA2 gene in the regulatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Kexin, Liu, Lei, Wang, Min, Li, Xianping, Wang, Bingqi, Yin, Sheng, Chen, Wanxin, Lin, Yingrui, Zhu, Xiaolin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10195139/
https://www.ncbi.nlm.nih.gov/pubmed/37140233
http://dx.doi.org/10.3724/abbs.2023069
Descripción
Sumario:Cervical cancer continues to be a concern, and the prognosis of locally advanced cervical cancer remains poor. IMPA2 was previously identified as a potential oncogene and regulator of tumor apoptosis. In this study, we aim to further elucidate the underlying mechanisms of IMPA2 gene in the regulation of cervical cancer apoptosis. First, we identify AIFM2 as an upregulated gene in IMPA2-silenced cervical cancer cells, and inhibition of AIFM2 reverses IMPA2 knockdown-induced apoptosis. Further study reveals that AIFM2 regulates cell apoptosis in a mitochondrial-dependent manner with a redistribution of mitochondrial membrane potential and intracellular Ca (2+) levels. However, the analysis of the STRING database and our experimental results show that AIFM2 has little effect on cervical cancer progression and survival. Further mechanistic study demonstrates that IMPA2 and AIFM2 silencing inhibits apoptosis by activating p53. Meanwhile, the knockdown of IMPA2 enhances the chemosensitivity of cervical cancer cells by strengthening paclitaxel-induced apoptosis. Based on the above results, the IMPA2/AIFM2/p53 pathway may be a new molecular mechanism for paclitaxel treatment of cervical cancer and an effective strategy to enhance the sensitivity of cervical cancer cells to paclitaxel. Our findings display a novel function of IMPA2 in regulating cell apoptosis and paclitaxel resistance mediated by a disturbance of AIFM2 and p53 expression, potentially making it a novel therapeutic target for cervical cancer treatment.