Cargando…

lncRNA ELFN1-AS1 promotes proliferation, migration and invasion and suppresses apoptosis in colorectal cancer cells by enhancing G6PD activity : lncRNA ELFN1-AS1 promotes the progression of colorectal cancer

Tumour cells change their metabolic patterns to support high proliferation rates and cope with oxidative stress. The lncRNA ELFN1-AS1 is highly expressed in a wide range of cancers and is essential to the proliferation and apoptosis of tumour cells. Nevertheless, its function in the metabolic reprog...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Fahong, Zhang, Wei, Wei, Hangzhi, Ma, Hanwei, Leng, Guangxian, Zhang, Youcheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10195140/
https://www.ncbi.nlm.nih.gov/pubmed/36786074
http://dx.doi.org/10.3724/abbs.2023010
Descripción
Sumario:Tumour cells change their metabolic patterns to support high proliferation rates and cope with oxidative stress. The lncRNA ELFN1-AS1 is highly expressed in a wide range of cancers and is essential to the proliferation and apoptosis of tumour cells. Nevertheless, its function in the metabolic reprogramming of tumour cells is unclear. Here we show that ELFN1-AS1 promotes glucose consumption as well as lactate and NADPH production. Database searching, bioinformatics analysis, RNA immunoprecipitation (RIP) and RNA pull-down assays show that ELFN1-AS1 enhances glucose-6-phosphate dehydrogenase ( G6PD) expression and activates the pentose phosphate pathway (PPP) by promoting TP53 degradation. In addition, luciferase reporter assay and chromatin immunoprecipitation (ChIP) show that YY1 binds to the ELFN1-AS1 promoter to promote transcriptional activation of ELFN1-AS1. Consistent with the in vitro experiments, knockdown of ELFN1-AS1 impedes the growth of tumours transplanted into mice by inhibiting the expression of G6PD. In conclusion, this study reveals that ELFN1-AS1 activates the PPP, and validates the regulatory role of the YY1/ ELFN1-AS1/ TP53/ G6PD axis in colorectal cancer.