Cargando…
Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice
Sickle-cell disease (SCD) is caused by an A·T-to-T·A transversion mutation in the β-globin gene (HBB). Here we show that prime editing can correct the SCD allele (HBB(S)) to wild type (HBB(A)) at frequencies of 15%–41% in haematopoietic stem and progenitor cells (HSPCs) from patients with SCD. Seven...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10195679/ https://www.ncbi.nlm.nih.gov/pubmed/37069266 http://dx.doi.org/10.1038/s41551-023-01026-0 |
_version_ | 1785044187144519680 |
---|---|
author | Everette, Kelcee A. Newby, Gregory A. Levine, Rachel M. Mayberry, Kalin Jang, Yoonjeong Mayuranathan, Thiyagaraj Nimmagadda, Nikitha Dempsey, Erin Li, Yichao Bhoopalan, Senthil Velan Liu, Xiong Davis, Jessie R. Nelson, Andrew T. Chen, Peter J. Sousa, Alexander A. Cheng, Yong Tisdale, John F. Weiss, Mitchell J. Yen, Jonathan S. Liu, David R. |
author_facet | Everette, Kelcee A. Newby, Gregory A. Levine, Rachel M. Mayberry, Kalin Jang, Yoonjeong Mayuranathan, Thiyagaraj Nimmagadda, Nikitha Dempsey, Erin Li, Yichao Bhoopalan, Senthil Velan Liu, Xiong Davis, Jessie R. Nelson, Andrew T. Chen, Peter J. Sousa, Alexander A. Cheng, Yong Tisdale, John F. Weiss, Mitchell J. Yen, Jonathan S. Liu, David R. |
author_sort | Everette, Kelcee A. |
collection | PubMed |
description | Sickle-cell disease (SCD) is caused by an A·T-to-T·A transversion mutation in the β-globin gene (HBB). Here we show that prime editing can correct the SCD allele (HBB(S)) to wild type (HBB(A)) at frequencies of 15%–41% in haematopoietic stem and progenitor cells (HSPCs) from patients with SCD. Seventeen weeks after transplantation into immunodeficient mice, prime-edited SCD HSPCs maintained HBB(A) levels and displayed engraftment frequencies, haematopoietic differentiation and lineage maturation similar to those of unedited HSPCs from healthy donors. An average of 42% of human erythroblasts and reticulocytes isolated 17 weeks after transplantation of prime-edited HSPCs from four SCD patient donors expressed HBB(A), exceeding the levels predicted for therapeutic benefit. HSPC-derived erythrocytes carried less sickle haemoglobin, contained HBB(A)-derived adult haemoglobin at 28%–43% of normal levels and resisted hypoxia-induced sickling. Minimal off-target editing was detected at over 100 sites nominated experimentally via unbiased genome-wide analysis. Our findings support the feasibility of a one-time prime editing SCD treatment that corrects HBB(S) to HBB(A), does not require any viral or non-viral DNA template and minimizes undesired consequences of DNA double-strand breaks. |
format | Online Article Text |
id | pubmed-10195679 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-101956792023-05-20 Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice Everette, Kelcee A. Newby, Gregory A. Levine, Rachel M. Mayberry, Kalin Jang, Yoonjeong Mayuranathan, Thiyagaraj Nimmagadda, Nikitha Dempsey, Erin Li, Yichao Bhoopalan, Senthil Velan Liu, Xiong Davis, Jessie R. Nelson, Andrew T. Chen, Peter J. Sousa, Alexander A. Cheng, Yong Tisdale, John F. Weiss, Mitchell J. Yen, Jonathan S. Liu, David R. Nat Biomed Eng Article Sickle-cell disease (SCD) is caused by an A·T-to-T·A transversion mutation in the β-globin gene (HBB). Here we show that prime editing can correct the SCD allele (HBB(S)) to wild type (HBB(A)) at frequencies of 15%–41% in haematopoietic stem and progenitor cells (HSPCs) from patients with SCD. Seventeen weeks after transplantation into immunodeficient mice, prime-edited SCD HSPCs maintained HBB(A) levels and displayed engraftment frequencies, haematopoietic differentiation and lineage maturation similar to those of unedited HSPCs from healthy donors. An average of 42% of human erythroblasts and reticulocytes isolated 17 weeks after transplantation of prime-edited HSPCs from four SCD patient donors expressed HBB(A), exceeding the levels predicted for therapeutic benefit. HSPC-derived erythrocytes carried less sickle haemoglobin, contained HBB(A)-derived adult haemoglobin at 28%–43% of normal levels and resisted hypoxia-induced sickling. Minimal off-target editing was detected at over 100 sites nominated experimentally via unbiased genome-wide analysis. Our findings support the feasibility of a one-time prime editing SCD treatment that corrects HBB(S) to HBB(A), does not require any viral or non-viral DNA template and minimizes undesired consequences of DNA double-strand breaks. Nature Publishing Group UK 2023-04-17 2023 /pmc/articles/PMC10195679/ /pubmed/37069266 http://dx.doi.org/10.1038/s41551-023-01026-0 Text en © The Author(s) 2023, corrected publication 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Everette, Kelcee A. Newby, Gregory A. Levine, Rachel M. Mayberry, Kalin Jang, Yoonjeong Mayuranathan, Thiyagaraj Nimmagadda, Nikitha Dempsey, Erin Li, Yichao Bhoopalan, Senthil Velan Liu, Xiong Davis, Jessie R. Nelson, Andrew T. Chen, Peter J. Sousa, Alexander A. Cheng, Yong Tisdale, John F. Weiss, Mitchell J. Yen, Jonathan S. Liu, David R. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice |
title | Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice |
title_full | Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice |
title_fullStr | Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice |
title_full_unstemmed | Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice |
title_short | Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice |
title_sort | ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10195679/ https://www.ncbi.nlm.nih.gov/pubmed/37069266 http://dx.doi.org/10.1038/s41551-023-01026-0 |
work_keys_str_mv | AT everettekelceea exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT newbygregorya exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT levinerachelm exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT mayberrykalin exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT jangyoonjeong exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT mayuranathanthiyagaraj exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT nimmagaddanikitha exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT dempseyerin exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT liyichao exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT bhoopalansenthilvelan exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT liuxiong exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT davisjessier exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT nelsonandrewt exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT chenpeterj exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT sousaalexandera exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT chengyong exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT tisdalejohnf exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT weissmitchellj exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT yenjonathans exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice AT liudavidr exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice |