Cargando…

Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice

Sickle-cell disease (SCD) is caused by an A·T-to-T·A transversion mutation in the β-globin gene (HBB). Here we show that prime editing can correct the SCD allele (HBB(S)) to wild type (HBB(A)) at frequencies of 15%–41% in haematopoietic stem and progenitor cells (HSPCs) from patients with SCD. Seven...

Descripción completa

Detalles Bibliográficos
Autores principales: Everette, Kelcee A., Newby, Gregory A., Levine, Rachel M., Mayberry, Kalin, Jang, Yoonjeong, Mayuranathan, Thiyagaraj, Nimmagadda, Nikitha, Dempsey, Erin, Li, Yichao, Bhoopalan, Senthil Velan, Liu, Xiong, Davis, Jessie R., Nelson, Andrew T., Chen, Peter J., Sousa, Alexander A., Cheng, Yong, Tisdale, John F., Weiss, Mitchell J., Yen, Jonathan S., Liu, David R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10195679/
https://www.ncbi.nlm.nih.gov/pubmed/37069266
http://dx.doi.org/10.1038/s41551-023-01026-0
_version_ 1785044187144519680
author Everette, Kelcee A.
Newby, Gregory A.
Levine, Rachel M.
Mayberry, Kalin
Jang, Yoonjeong
Mayuranathan, Thiyagaraj
Nimmagadda, Nikitha
Dempsey, Erin
Li, Yichao
Bhoopalan, Senthil Velan
Liu, Xiong
Davis, Jessie R.
Nelson, Andrew T.
Chen, Peter J.
Sousa, Alexander A.
Cheng, Yong
Tisdale, John F.
Weiss, Mitchell J.
Yen, Jonathan S.
Liu, David R.
author_facet Everette, Kelcee A.
Newby, Gregory A.
Levine, Rachel M.
Mayberry, Kalin
Jang, Yoonjeong
Mayuranathan, Thiyagaraj
Nimmagadda, Nikitha
Dempsey, Erin
Li, Yichao
Bhoopalan, Senthil Velan
Liu, Xiong
Davis, Jessie R.
Nelson, Andrew T.
Chen, Peter J.
Sousa, Alexander A.
Cheng, Yong
Tisdale, John F.
Weiss, Mitchell J.
Yen, Jonathan S.
Liu, David R.
author_sort Everette, Kelcee A.
collection PubMed
description Sickle-cell disease (SCD) is caused by an A·T-to-T·A transversion mutation in the β-globin gene (HBB). Here we show that prime editing can correct the SCD allele (HBB(S)) to wild type (HBB(A)) at frequencies of 15%–41% in haematopoietic stem and progenitor cells (HSPCs) from patients with SCD. Seventeen weeks after transplantation into immunodeficient mice, prime-edited SCD HSPCs maintained HBB(A) levels and displayed engraftment frequencies, haematopoietic differentiation and lineage maturation similar to those of unedited HSPCs from healthy donors. An average of 42% of human erythroblasts and reticulocytes isolated 17 weeks after transplantation of prime-edited HSPCs from four SCD patient donors expressed HBB(A), exceeding the levels predicted for therapeutic benefit. HSPC-derived erythrocytes carried less sickle haemoglobin, contained HBB(A)-derived adult haemoglobin at 28%–43% of normal levels and resisted hypoxia-induced sickling. Minimal off-target editing was detected at over 100 sites nominated experimentally via unbiased genome-wide analysis. Our findings support the feasibility of a one-time prime editing SCD treatment that corrects HBB(S) to HBB(A), does not require any viral or non-viral DNA template and minimizes undesired consequences of DNA double-strand breaks.
format Online
Article
Text
id pubmed-10195679
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101956792023-05-20 Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice Everette, Kelcee A. Newby, Gregory A. Levine, Rachel M. Mayberry, Kalin Jang, Yoonjeong Mayuranathan, Thiyagaraj Nimmagadda, Nikitha Dempsey, Erin Li, Yichao Bhoopalan, Senthil Velan Liu, Xiong Davis, Jessie R. Nelson, Andrew T. Chen, Peter J. Sousa, Alexander A. Cheng, Yong Tisdale, John F. Weiss, Mitchell J. Yen, Jonathan S. Liu, David R. Nat Biomed Eng Article Sickle-cell disease (SCD) is caused by an A·T-to-T·A transversion mutation in the β-globin gene (HBB). Here we show that prime editing can correct the SCD allele (HBB(S)) to wild type (HBB(A)) at frequencies of 15%–41% in haematopoietic stem and progenitor cells (HSPCs) from patients with SCD. Seventeen weeks after transplantation into immunodeficient mice, prime-edited SCD HSPCs maintained HBB(A) levels and displayed engraftment frequencies, haematopoietic differentiation and lineage maturation similar to those of unedited HSPCs from healthy donors. An average of 42% of human erythroblasts and reticulocytes isolated 17 weeks after transplantation of prime-edited HSPCs from four SCD patient donors expressed HBB(A), exceeding the levels predicted for therapeutic benefit. HSPC-derived erythrocytes carried less sickle haemoglobin, contained HBB(A)-derived adult haemoglobin at 28%–43% of normal levels and resisted hypoxia-induced sickling. Minimal off-target editing was detected at over 100 sites nominated experimentally via unbiased genome-wide analysis. Our findings support the feasibility of a one-time prime editing SCD treatment that corrects HBB(S) to HBB(A), does not require any viral or non-viral DNA template and minimizes undesired consequences of DNA double-strand breaks. Nature Publishing Group UK 2023-04-17 2023 /pmc/articles/PMC10195679/ /pubmed/37069266 http://dx.doi.org/10.1038/s41551-023-01026-0 Text en © The Author(s) 2023, corrected publication 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Everette, Kelcee A.
Newby, Gregory A.
Levine, Rachel M.
Mayberry, Kalin
Jang, Yoonjeong
Mayuranathan, Thiyagaraj
Nimmagadda, Nikitha
Dempsey, Erin
Li, Yichao
Bhoopalan, Senthil Velan
Liu, Xiong
Davis, Jessie R.
Nelson, Andrew T.
Chen, Peter J.
Sousa, Alexander A.
Cheng, Yong
Tisdale, John F.
Weiss, Mitchell J.
Yen, Jonathan S.
Liu, David R.
Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice
title Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice
title_full Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice
title_fullStr Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice
title_full_unstemmed Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice
title_short Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice
title_sort ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10195679/
https://www.ncbi.nlm.nih.gov/pubmed/37069266
http://dx.doi.org/10.1038/s41551-023-01026-0
work_keys_str_mv AT everettekelceea exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT newbygregorya exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT levinerachelm exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT mayberrykalin exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT jangyoonjeong exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT mayuranathanthiyagaraj exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT nimmagaddanikitha exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT dempseyerin exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT liyichao exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT bhoopalansenthilvelan exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT liuxiong exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT davisjessier exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT nelsonandrewt exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT chenpeterj exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT sousaalexandera exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT chengyong exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT tisdalejohnf exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT weissmitchellj exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT yenjonathans exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice
AT liudavidr exvivoprimeeditingofpatienthaematopoieticstemcellsrescuessicklecelldiseasephenotypesafterengraftmentinmice