Cargando…
Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders
Quantum error correction offers a promising path for performing high fidelity quantum computations. Although fully fault-tolerant executions of algorithms remain unrealized, recent improvements in control electronics and quantum hardware enable increasingly advanced demonstrations of the necessary o...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10195837/ https://www.ncbi.nlm.nih.gov/pubmed/37202409 http://dx.doi.org/10.1038/s41467-023-38247-5 |
_version_ | 1785044217064587264 |
---|---|
author | Sundaresan, Neereja Yoder, Theodore J. Kim, Youngseok Li, Muyuan Chen, Edward H. Harper, Grace Thorbeck, Ted Cross, Andrew W. Córcoles, Antonio D. Takita, Maika |
author_facet | Sundaresan, Neereja Yoder, Theodore J. Kim, Youngseok Li, Muyuan Chen, Edward H. Harper, Grace Thorbeck, Ted Cross, Andrew W. Córcoles, Antonio D. Takita, Maika |
author_sort | Sundaresan, Neereja |
collection | PubMed |
description | Quantum error correction offers a promising path for performing high fidelity quantum computations. Although fully fault-tolerant executions of algorithms remain unrealized, recent improvements in control electronics and quantum hardware enable increasingly advanced demonstrations of the necessary operations for error correction. Here, we perform quantum error correction on superconducting qubits connected in a heavy-hexagon lattice. We encode a logical qubit with distance three and perform several rounds of fault-tolerant syndrome measurements that allow for the correction of any single fault in the circuitry. Using real-time feedback, we reset syndrome and flag qubits conditionally after each syndrome extraction cycle. We report decoder dependent logical error, with average logical error per syndrome measurement in Z(X)-basis of ~0.040 (~0.088) and ~0.037 (~0.087) for matching and maximum likelihood decoders, respectively, on leakage post-selected data. |
format | Online Article Text |
id | pubmed-10195837 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-101958372023-05-20 Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders Sundaresan, Neereja Yoder, Theodore J. Kim, Youngseok Li, Muyuan Chen, Edward H. Harper, Grace Thorbeck, Ted Cross, Andrew W. Córcoles, Antonio D. Takita, Maika Nat Commun Article Quantum error correction offers a promising path for performing high fidelity quantum computations. Although fully fault-tolerant executions of algorithms remain unrealized, recent improvements in control electronics and quantum hardware enable increasingly advanced demonstrations of the necessary operations for error correction. Here, we perform quantum error correction on superconducting qubits connected in a heavy-hexagon lattice. We encode a logical qubit with distance three and perform several rounds of fault-tolerant syndrome measurements that allow for the correction of any single fault in the circuitry. Using real-time feedback, we reset syndrome and flag qubits conditionally after each syndrome extraction cycle. We report decoder dependent logical error, with average logical error per syndrome measurement in Z(X)-basis of ~0.040 (~0.088) and ~0.037 (~0.087) for matching and maximum likelihood decoders, respectively, on leakage post-selected data. Nature Publishing Group UK 2023-05-18 /pmc/articles/PMC10195837/ /pubmed/37202409 http://dx.doi.org/10.1038/s41467-023-38247-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Sundaresan, Neereja Yoder, Theodore J. Kim, Youngseok Li, Muyuan Chen, Edward H. Harper, Grace Thorbeck, Ted Cross, Andrew W. Córcoles, Antonio D. Takita, Maika Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders |
title | Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders |
title_full | Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders |
title_fullStr | Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders |
title_full_unstemmed | Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders |
title_short | Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders |
title_sort | demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10195837/ https://www.ncbi.nlm.nih.gov/pubmed/37202409 http://dx.doi.org/10.1038/s41467-023-38247-5 |
work_keys_str_mv | AT sundaresanneereja demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders AT yodertheodorej demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders AT kimyoungseok demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders AT limuyuan demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders AT chenedwardh demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders AT harpergrace demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders AT thorbeckted demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders AT crossandreww demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders AT corcolesantoniod demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders AT takitamaika demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders |