Cargando…

Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders

Quantum error correction offers a promising path for performing high fidelity quantum computations. Although fully fault-tolerant executions of algorithms remain unrealized, recent improvements in control electronics and quantum hardware enable increasingly advanced demonstrations of the necessary o...

Descripción completa

Detalles Bibliográficos
Autores principales: Sundaresan, Neereja, Yoder, Theodore J., Kim, Youngseok, Li, Muyuan, Chen, Edward H., Harper, Grace, Thorbeck, Ted, Cross, Andrew W., Córcoles, Antonio D., Takita, Maika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10195837/
https://www.ncbi.nlm.nih.gov/pubmed/37202409
http://dx.doi.org/10.1038/s41467-023-38247-5
_version_ 1785044217064587264
author Sundaresan, Neereja
Yoder, Theodore J.
Kim, Youngseok
Li, Muyuan
Chen, Edward H.
Harper, Grace
Thorbeck, Ted
Cross, Andrew W.
Córcoles, Antonio D.
Takita, Maika
author_facet Sundaresan, Neereja
Yoder, Theodore J.
Kim, Youngseok
Li, Muyuan
Chen, Edward H.
Harper, Grace
Thorbeck, Ted
Cross, Andrew W.
Córcoles, Antonio D.
Takita, Maika
author_sort Sundaresan, Neereja
collection PubMed
description Quantum error correction offers a promising path for performing high fidelity quantum computations. Although fully fault-tolerant executions of algorithms remain unrealized, recent improvements in control electronics and quantum hardware enable increasingly advanced demonstrations of the necessary operations for error correction. Here, we perform quantum error correction on superconducting qubits connected in a heavy-hexagon lattice. We encode a logical qubit with distance three and perform several rounds of fault-tolerant syndrome measurements that allow for the correction of any single fault in the circuitry. Using real-time feedback, we reset syndrome and flag qubits conditionally after each syndrome extraction cycle. We report decoder dependent logical error, with average logical error per syndrome measurement in Z(X)-basis of ~0.040 (~0.088) and ~0.037 (~0.087) for matching and maximum likelihood decoders, respectively, on leakage post-selected data.
format Online
Article
Text
id pubmed-10195837
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101958372023-05-20 Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders Sundaresan, Neereja Yoder, Theodore J. Kim, Youngseok Li, Muyuan Chen, Edward H. Harper, Grace Thorbeck, Ted Cross, Andrew W. Córcoles, Antonio D. Takita, Maika Nat Commun Article Quantum error correction offers a promising path for performing high fidelity quantum computations. Although fully fault-tolerant executions of algorithms remain unrealized, recent improvements in control electronics and quantum hardware enable increasingly advanced demonstrations of the necessary operations for error correction. Here, we perform quantum error correction on superconducting qubits connected in a heavy-hexagon lattice. We encode a logical qubit with distance three and perform several rounds of fault-tolerant syndrome measurements that allow for the correction of any single fault in the circuitry. Using real-time feedback, we reset syndrome and flag qubits conditionally after each syndrome extraction cycle. We report decoder dependent logical error, with average logical error per syndrome measurement in Z(X)-basis of ~0.040 (~0.088) and ~0.037 (~0.087) for matching and maximum likelihood decoders, respectively, on leakage post-selected data. Nature Publishing Group UK 2023-05-18 /pmc/articles/PMC10195837/ /pubmed/37202409 http://dx.doi.org/10.1038/s41467-023-38247-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Sundaresan, Neereja
Yoder, Theodore J.
Kim, Youngseok
Li, Muyuan
Chen, Edward H.
Harper, Grace
Thorbeck, Ted
Cross, Andrew W.
Córcoles, Antonio D.
Takita, Maika
Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders
title Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders
title_full Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders
title_fullStr Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders
title_full_unstemmed Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders
title_short Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders
title_sort demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10195837/
https://www.ncbi.nlm.nih.gov/pubmed/37202409
http://dx.doi.org/10.1038/s41467-023-38247-5
work_keys_str_mv AT sundaresanneereja demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders
AT yodertheodorej demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders
AT kimyoungseok demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders
AT limuyuan demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders
AT chenedwardh demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders
AT harpergrace demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders
AT thorbeckted demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders
AT crossandreww demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders
AT corcolesantoniod demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders
AT takitamaika demonstratingmultiroundsubsystemquantumerrorcorrectionusingmatchingandmaximumlikelihooddecoders