Cargando…
Investigation of space division multiplexing in multimode step-index silica photonic crystal fibers
The feasible distance is presented for space division multiplexed (SDM) transmission along multimode silica step-index photonic crystal fiber (SI PCF) by solving the time-independent power flow equation (TI PFE). These distances for two and three spatially multiplexed channels were determined to dep...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10195899/ https://www.ncbi.nlm.nih.gov/pubmed/37215769 http://dx.doi.org/10.1016/j.heliyon.2023.e15882 |
Sumario: | The feasible distance is presented for space division multiplexed (SDM) transmission along multimode silica step-index photonic crystal fiber (SI PCF) by solving the time-independent power flow equation (TI PFE). These distances for two and three spatially multiplexed channels were determined to depend on mode coupling, fiber structural parameters, and launch beam width in order to keep crosstalk in two- and three-channel modulation to a maximum of 20% of the peak signal strength. We found that the length of the fiber at which an SDM can be realized increases with the size of the air-holes in the cladding (higher NA). When a wide launch excites more guiding modes, these lengths become shorter. Such knowledge is valuable for the use of multimode silica SI PCFs in communications. |
---|