Cargando…
Automatic and standardized quality assurance of digital mammography and tomosynthesis with deep convolutional neural networks
OBJECTIVES: The aim of this study was to develop and validate a commercially available AI platform for the automatic determination of image quality in mammography and tomosynthesis considering a standardized set of features. MATERIALS AND METHODS: In this retrospective study, 11,733 mammograms and s...
Autores principales: | Hejduk, Patryk, Sexauer, Raphael, Ruppert, Carlotta, Borkowski, Karol, Unkelbach, Jan, Schmidt, Noemi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10195933/ https://www.ncbi.nlm.nih.gov/pubmed/37199794 http://dx.doi.org/10.1186/s13244-023-01396-8 |
Ejemplares similares
-
Diagnostic accuracy of automated ACR BI-RADS breast density classification using deep convolutional neural networks
por: Sexauer, Raphael, et al.
Publicado: (2023) -
Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network
por: Hejduk, Patryk, et al.
Publicado: (2022) -
Detecting Abnormal Axillary Lymph Nodes on Mammograms Using a Deep Convolutional Neural Network
por: Abel, Frederik, et al.
Publicado: (2022) -
Applied Machine Learning in Spiral Breast-CT: Can We Train a Deep Convolutional Neural Network for Automatic, Standardized and Observer Independent Classification of Breast Density?
por: Landsmann, Anna, et al.
Publicado: (2022) -
Digital breast tomosynthesis: a comparison of the accuracy of digital breast tomosynthesis, two-dimensional digital mammography and two-dimensional screening mammography (film-screen)
por: Michell, MJ, et al.
Publicado: (2009)