Cargando…
Deep-learning-based automatic segmentation and classification for craniopharyngiomas
OBJECTIVE: Neuronavigation and classification of craniopharyngiomas can guide surgical approaches and prognostic information. The QST classification has been developed according to the origin of craniopharyngiomas; however, accurate preoperative automatic segmentation and the QST classification rema...
Autores principales: | Yan, Xiaorong, Lin, Bingquan, Fu, Jun, Li, Shuo, Wang, He, Fan, Wenjian, Fan, Yanghua, Feng, Ming, Wang, Renzhi, Fan, Jun, Qi, Songtao, Jiang, Changzhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10196103/ https://www.ncbi.nlm.nih.gov/pubmed/37213305 http://dx.doi.org/10.3389/fonc.2023.1048841 |
Ejemplares similares
-
Reinvestigating Tumor–Ventricle Relationship of Craniopharyngiomas With Predominantly Ventricular Involvement: An Endoscopic Endonasal Series Based on Histopathological Assessment
por: Fan, Jun, et al.
Publicado: (2021) -
CBX4-dependent regulation of HDAC3 nuclear translocation reduces Bmp2-induced osteoblastic differentiation and calcification in adamantinomatous craniopharyngioma
por: Yan, Xiaorong, et al.
Publicado: (2022) -
Clinical impact of craniopharyngioma classification based on location origin: a multicenter retrospective study
por: Hu, Wenfu, et al.
Publicado: (2021) -
Review of Deep Learning Based Automatic Segmentation for Lung Cancer Radiotherapy
por: Liu, Xi, et al.
Publicado: (2021) -
Automatic polyp image segmentation and cancer prediction based on deep learning
por: Shen, Tongping, et al.
Publicado: (2023)