Cargando…

Influence of ambient temperature on the phenology of the greater mouse‐eared bat (Myotis myotis)

In order to assess the consequences of climate change and evaluate its impacts on wildlife, it is essential to do so on a species‐specific level. It is assumed that changes in the ambient temperature influence energy consumption as well as food availability and thus foraging behavior, reproduction,...

Descripción completa

Detalles Bibliográficos
Autores principales: Matthäus, Laura, Kugelschafter, Karl, Fietz, Joanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10196220/
https://www.ncbi.nlm.nih.gov/pubmed/37214612
http://dx.doi.org/10.1002/ece3.10081
Descripción
Sumario:In order to assess the consequences of climate change and evaluate its impacts on wildlife, it is essential to do so on a species‐specific level. It is assumed that changes in the ambient temperature influence energy consumption as well as food availability and thus foraging behavior, reproduction, survival, and therefore population dynamics in bats. Based on this assumption, the present study aims to gain insights into the roosting and breeding behavior of the greater mouse‐eared bat (Myotis myotis) in relation to changes of the ambient temperature. For this purpose, we investigated the effect of ambient temperature on the phenology of the greater mouse‐eared bat by using activity data of the bats collected using light barriers at the maternity roosts. The light barrier used in this study is a system that detects the interruption of two light beams, for example, by a flying bat, and displays it as an electrical signal. : 1. the higher the winter temperatures, the earlier the greater mouse‐eared bats returned to the roosts to form the maternity colony; however, this was only true for ambient temperatures below 0.5°C, 2. birth season started earlier at higher spring temperatures, 3. the dissolution of maternity roosts occurred earlier with earlier birth season and at higher ambient temperatures during lactation. The results revealed that ambient temperature has an influence on the phenology of the greater mouse‐eared bat. Depending on the respective life history stage, an increase in ambient temperature can have a positive or negative effect on the fitness of the animals. In recent years, mild winters have been recorded more frequently, which can have an influence on the behavior of bats. Warm winters within certain limits seem to lead to an earlier formation of the maternity colony, which can be positive or negative for the bats depending on persistent weather conditions and thus insect availability. In the course of climate change, we can also expect earlier spring events and an increase in spring temperature, as well as hot spells in summer. These warm springs and summers seem to lead to an earlier beginning of births, a faster development of the juveniles and an earlier dissolution of the maternity roost. An advance of reproductive activities can be assumed to increase the chance to survive the following winter in both mothers and their young, as they have more time to build up sufficient energy reserves for hibernation before winter starts. Due to the climatic changes, phenological changes of the bats be expected. This study highlights that in order to understand the impact of climate change on biodiversity, it is necessary to investigate in detail effects on a species‐specific level and also to consider direct and indirect effects of ambient temperature on different life history stages.