Cargando…
Interpretable deep learning survival predictive tool for small cell lung cancer
BACKGROUND: Small cell lung cancer (SCLC) is an aggressive and almost universally lethal neoplasm. There is no accurate predictive method for its prognosis. Artificial intelligence deep learning may bring new hope. METHODS: By searching the Surveillance, Epidemiology, and End Results database (SEER)...
Autores principales: | Zhang, Dongrui, Lu, Baohua, Liang, Bowen, Li, Bo, Wang, Ziyu, Gu, Meng, Jia, Wei, Pan, Yuanming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10196231/ https://www.ncbi.nlm.nih.gov/pubmed/37213271 http://dx.doi.org/10.3389/fonc.2023.1162181 |
Ejemplares similares
-
Deep-LC: A Novel Deep Learning Method of Identifying Non-Small Cell Lung Cancer-Related Genes
por: Li, Mo, et al.
Publicado: (2022) -
Prediction of bone metastasis in non-small cell lung cancer based on machine learning
por: Li, Meng-Pan, et al.
Publicado: (2023) -
A Deep-Learning Model With the Attention Mechanism Could Rigorously Predict Survivals in Neuroblastoma
por: Feng, Chenzhao, et al.
Publicado: (2021) -
A deep learning-based framework for lung cancer survival analysis with biomarker interpretation
por: Cui, Lei, et al.
Publicado: (2020) -
Clinical and Biological Interpretation of Survival Curves of Cancer Patients, Exemplified With Stage IV Non-Small Cell Lung Cancers With Long Follow-up
por: Baak, Jan P. A., et al.
Publicado: (2022)