Cargando…
Joint conditional generative adversarial networks for eyelash artifact removal in ultra-wide-field fundus images
Background: Ultra-Wide-Field (UWF) fundus imaging is an essential diagnostic tool for identifying ophthalmologic diseases, as it captures detailed retinal structures within a wider field of view (FOV). However, the presence of eyelashes along the edge of the eyelids can cast shadows and obscure the...
Autores principales: | Zhang, Jiong, Sha, Dengfeng, Ma, Yuhui, Zhang, Dan, Tan, Tao, Xu, Xiayu, Yi, Quanyong, Zhao, Yitian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10196374/ https://www.ncbi.nlm.nih.gov/pubmed/37215081 http://dx.doi.org/10.3389/fcell.2023.1181305 |
Ejemplares similares
-
Deep-Learning-Based Hemoglobin Concentration Prediction and Anemia Screening Using Ultra-Wide Field Fundus Images
por: Zhao, Xinyu, et al.
Publicado: (2022) -
Deep learning for detecting visually impaired cataracts using fundus images
por: Xie, He, et al.
Publicado: (2023) -
Choroidal layer segmentation in OCT images by a boundary enhancement network
por: Wu, Wenjun, et al.
Publicado: (2022) -
Convolutional autoencoder joint boundary and mask adversarial learning for fundus image segmentation
por: Zhang, Xu, et al.
Publicado: (2022) -
Eyelashes
Publicado: (1871)