Cargando…
Automatic reconstruction of interstitial needles using CT images in post-operative cervical cancer brachytherapy based on deep learning
PURPOSE: The purpose of this study was to investigate the precision of deep learning (DL)-based auto-reconstruction in localizing interstitial needles in post-operative cervical cancer brachytherapy (BT) using three-dimensional (3D) computed tomography (CT) images. MATERIAL AND METHODS: A convolutio...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Termedia Publishing House
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10196730/ https://www.ncbi.nlm.nih.gov/pubmed/37215613 http://dx.doi.org/10.5114/jcb.2023.126514 |
Sumario: | PURPOSE: The purpose of this study was to investigate the precision of deep learning (DL)-based auto-reconstruction in localizing interstitial needles in post-operative cervical cancer brachytherapy (BT) using three-dimensional (3D) computed tomography (CT) images. MATERIAL AND METHODS: A convolutional neural network (CNN) was developed and presented for automatic reconstruction of interstitial needles. Data of 70 post-operative cervical cancer patients who received CT-based BT were used to train and test this DL model. All patients were treated with three metallic needles. Dice similarity coefficient (DSC), 95% Hausdorff distance (95% HD), and Jaccard coefficient (JC) were applied to evaluate the geometric accuracy of auto-reconstruction for each needle. Dose-volume indexes (DVI) between manual and automatic methods were used to analyze the dosimetric difference. Correlation between geometric metrics and dosimetric difference was evaluated using Spearman correlation analysis. RESULTS: The mean DSC values of DL-based model were 0.88, 0.89, and 0.90 for three metallic needles. Wilcoxon signed-rank test indicated no significant dosimetric differences in all BT planning structures between manual and automatic reconstruction methods (p > 0.05). Spearman correlation analysis demonstrated weak link between geometric metrics and dosimetry differences. CONCLUSIONS: DL-based reconstruction method can be used to precisely localize the interstitial needles in 3D-CT images. The proposed automatic approach could improve the consistency of treatment planning for post-operative cervical cancer brachytherapy. |
---|