Cargando…
Feature-enhanced adversarial semi-supervised semantic segmentation network for pulmonary embolism annotation
This study established a feature-enhanced adversarial semi-supervised semantic segmentation model to automatically annotate pulmonary embolism (PE) lesion areas in computed tomography pulmonary angiogram (CTPA) images. In the current study, all of the PE CTPA image segmentation methods were trained...
Autores principales: | Cheng, Ting-Wei, Chua, Yi Wei, Huang, Ching-Chun, Chang, Jerry, Kuo, Chin, Cheng, Yun-Chien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10196850/ https://www.ncbi.nlm.nih.gov/pubmed/37215788 http://dx.doi.org/10.1016/j.heliyon.2023.e16060 |
Ejemplares similares
-
Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations
por: Pagano, Lucas, et al.
Publicado: (2023) -
Revisiting Consistency for Semi-Supervised Semantic Segmentation †
por: Grubišić, Ivan, et al.
Publicado: (2023) -
Lidar–Camera Semi-Supervised Learning for Semantic Segmentation
por: Caltagirone, Luca, et al.
Publicado: (2021) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Semi-supervised adversarial discriminative domain adaptation
por: Nguyen, Thai-Vu, et al.
Publicado: (2022)