Cargando…
Pig Slurry Management Producing N Mineral Concentrates: A Full-Scale Case Study
[Image: see text] Manure treatment to recover nutrients presents a great challenge to delocalize nutrients from overloaded areas to those needing such nutrients. To do this, approaches for the treatment of manure have been proposed, and currently, they are mostly under investigation before being upg...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10196920/ https://www.ncbi.nlm.nih.gov/pubmed/37213259 http://dx.doi.org/10.1021/acssuschemeng.2c07016 |
Sumario: | [Image: see text] Manure treatment to recover nutrients presents a great challenge to delocalize nutrients from overloaded areas to those needing such nutrients. To do this, approaches for the treatment of manure have been proposed, and currently, they are mostly under investigation before being upgraded to full scale. There are very few fully operating plants recovering nutrients and, therefore, very few data on which to base environmental and economic studies. In this work, a treatment plant carrying out full-scale membrane technology to treat manure to reduce its total volume and produce a nutrient-rich fraction, i.e., the concentrate, was studied. The concentrate fraction allowed the recovery of 46% of total N and 43% of total P. The high mineral N content, i.e., N-NH(4)/total-N > 91%, allowed matching the REcovered Nitrogen from manURE (RENURE) criteria proposed by the European Commission to allow the potential substitution of synthetic chemical fertilizers in vulnerable areas characterized by nutrient overloading. Life cycle assessment (LCA) performed by using full-scale data indicated that nutrient recovery by the process studied, when compared with the production of synthetic mineral fertilizers, had a lower impact for the 12 categories studied. LCA also suggested precautions which might reduce environmental impacts even more, i.e., covering the slurry to reduce NH(3), N(2)O, and CH(4) emissions and reducing energy consumption by promoting renewable production. The system studied presented a total cost of 4.3 € tons(–1) of slurry treated, which is relatively low compared to other similar technologies. |
---|