Cargando…

Integrated FT-ICR MS and metabolome reveals diatom-derived organic matter by bacterial transformation under warming and acidification

Bacterial transformation and processing of diatom-derived organic matter (OM) is extremely important for the cycling of production and energy in marine ecosystems; this process contributes to the production of microbial food webs. In this study, a cultivable bacterium (Roseobacter sp. SD-R1) from th...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yang, Ma, Chao, Sun, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197009/
https://www.ncbi.nlm.nih.gov/pubmed/37213222
http://dx.doi.org/10.1016/j.isci.2023.106812
Descripción
Sumario:Bacterial transformation and processing of diatom-derived organic matter (OM) is extremely important for the cycling of production and energy in marine ecosystems; this process contributes to the production of microbial food webs. In this study, a cultivable bacterium (Roseobacter sp. SD-R1) from the marine diatom Skeletonema dohrnii were isolated and identified. A combined Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS)/untargeted metabolomics approach was used to synthesize the results of bacterial transformation with dissolved OM (DOM) and lysate OM (LOM) under warming and acidification through laboratory experiments. Roseobacter sp. SD-R1 had different preferences for the conversion of molecules in S. dohrnii-derived DOM and LOM treatments. The effects of warming and acidification contribute to the increased number and complexity of molecules of carbon, hydrogen, oxygen, nitrogen, and sulfur after the bacterial transformation of OM. The chemical complexity generated by bacterial metabolism provides new insights into the mechanisms that shape OM complexity.