Cargando…

A descriptive and validation study of a predictive model of severity of SARS-COV-2 infection

OBJECTIVES: The strain the SARS-COV-2 pandemic is putting on hospitals requires that predictive values are identified for a rapid triage and management of patients at a higher risk of developing severe COVID-19. We developed and validated a prognostic model of COVID-19 severity. METHODS: A descripti...

Descripción completa

Detalles Bibliográficos
Autores principales: Villena-Ortiz, Yolanda, Giralt, Marina, Castellote-Bellés, Laura, Lopez-Martínez, Rosa M., Martinez-Sanchez, Luisa, García-Fernández, Alba Estela, Ferrer-Costa, Roser, Rodríguez-Frias, Francisco, Casis, Ernesto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197269/
https://www.ncbi.nlm.nih.gov/pubmed/37362407
http://dx.doi.org/10.1515/almed-2021-0039
Descripción
Sumario:OBJECTIVES: The strain the SARS-COV-2 pandemic is putting on hospitals requires that predictive values are identified for a rapid triage and management of patients at a higher risk of developing severe COVID-19. We developed and validated a prognostic model of COVID-19 severity. METHODS: A descriptive, comparative study of patients with positive vs. negative PCR-RT for SARS-COV-2 and of patients who developed moderate vs. severe COVID-19 was conducted. The model was built based on analytical and demographic data and comorbidities of patients seen in an Emergency Department with symptoms consistent with COVID-19. A logistic regression model was designed from data of the COVID-19-positive cohort. RESULTS: The sample was composed of 410 COVID-positive patients (303 with moderate disease and 107 with severe disease) and 81 COVID-negative patients. The predictive variables identified included lactate dehydrogenase, C-reactive protein, total proteins, urea, and platelets. Internal calibration showed an area under the ROC curve (AUC) of 0.88 (CI 95%: 0.85–0.92), with a rate of correct classifications of 85.2% for a cut-off value of 0.5. External validation (100 patients) yielded an AUC of 0.79 (95% CI: 0.71–0.89), with a rate of correct classifications of 73%. CONCLUSIONS: The predictive model identifies patients at a higher risk of developing severe COVID-19 at Emergency Department, with a first blood test and common parameters used in a clinical laboratory. This model may be a valuable tool for clinical planning and decision-making.