Cargando…
Towards COVID-19 fake news detection using transformer-based models
The COVID-19 pandemic has resulted in a surge of fake news, creating public health risks. However, developing an effective way to detect such news is challenging, especially when published news involves mixing true and false information. Detecting COVID-19 fake news has become a critical task in the...
Autores principales: | Alghamdi, Jawaher, Lin, Yuqing, Luo, Suhuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197436/ https://www.ncbi.nlm.nih.gov/pubmed/37250528 http://dx.doi.org/10.1016/j.knosys.2023.110642 |
Ejemplares similares
-
Fake or real news about COVID-19? Pretrained transformer model to detect potential misleading news
por: Malla, SreeJagadeesh, et al.
Publicado: (2022) -
Fake news detection based on news content and social contexts: a transformer-based approach
por: Raza, Shaina, et al.
Publicado: (2022) -
Fake news and COVID-19: modelling the predictors of fake news sharing among social media users
por: Apuke, Oberiri Destiny, et al.
Publicado: (2021) -
“Fake Tan” or “Fake News”?
por: Meyer, Georg, et al.
Publicado: (2020) -
Fake news stance detection using selective features and FakeNET
por: Aljrees, Turki, et al.
Publicado: (2023)