Cargando…
Multi-vendor evaluation of artificial intelligence as an independent reader for double reading in breast cancer screening on 275,900 mammograms
BACKGROUND: Double reading (DR) in screening mammography increases cancer detection and lowers recall rates, but has sustainability challenges due to workforce shortages. Artificial intelligence (AI) as an independent reader (IR) in DR may provide a cost-effective solution with the potential to impr...
Autores principales: | Sharma, Nisha, Ng, Annie Y., James, Jonathan J., Khara, Galvin, Ambrózay, Éva, Austin, Christopher C., Forrai, Gábor, Fox, Georgia, Glocker, Ben, Heindl, Andreas, Karpati, Edit, Rijken, Tobias M., Venkataraman, Vignesh, Yearsley, Joseph E., Kecskemethy, Peter D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197505/ https://www.ncbi.nlm.nih.gov/pubmed/37208717 http://dx.doi.org/10.1186/s12885-023-10890-7 |
Ejemplares similares
-
Automatic correction of performance drift under acquisition shift in medical image classification
por: Roschewitz, Mélanie, et al.
Publicado: (2023) -
Impact of the second reader on screening outcome at blinded double reading of digital screening mammograms
por: Coolen, Angela M. P., et al.
Publicado: (2018) -
A machine learning model based on readers’ characteristics to predict their performances in reading screening mammograms
por: Gandomkar, Ziba, et al.
Publicado: (2022) -
Automated Identification of Coronary Arteries in Assisting Inexperienced Readers: Comparison between Two Commercial Vendors
por: De Santis, Domenico, et al.
Publicado: (2022) -
Assessing Vendors
por: More, Josh
Publicado: (2013)