Cargando…
Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons
Dopa-responsive dystonia (DRD) and Parkinson’s disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197517/ https://www.ncbi.nlm.nih.gov/pubmed/37214873 http://dx.doi.org/10.1101/2023.05.08.539795 |
_version_ | 1785044569004441600 |
---|---|
author | Cronin, Shane J. F. Yu, Weonjin Hale, Ashley Licht-Mayer, Simon Crabtree, Mark J Korecka, Joanna A. Tretiakov, Evgenii O. Sealey-Cardona, Marco Somlyay, Mate Onji, Masahiro An, Meilin Fox, Jesse D. Turnes, Bruna Lenfers Gomez-Diaz, Carlos da Luz Scheffer, Débora Cikes, Domagoj Nagy, Vanja Weidinger, Adelheid Wolf, Alexandra Reither, Harald Chabloz, Antoine Kavirayani, Anoop Rao, Shuan Andrews, Nick Latremoliere, Alban Costigan, Michael Douglas, Gillian Freitas, Fernando Cini Pifl, Christian Walz, Roger Konrat, Robert Mahad, Don J. Koslov, Andrey V. Latini, Alexandra Isacson, Ole Harkany, Tibor Hallett, Penelope J. Bagby, Stefan Woolf, Clifford J. Channon, Keith M. Je, Hyunsoo Shawn Penninger, Josef M. |
author_facet | Cronin, Shane J. F. Yu, Weonjin Hale, Ashley Licht-Mayer, Simon Crabtree, Mark J Korecka, Joanna A. Tretiakov, Evgenii O. Sealey-Cardona, Marco Somlyay, Mate Onji, Masahiro An, Meilin Fox, Jesse D. Turnes, Bruna Lenfers Gomez-Diaz, Carlos da Luz Scheffer, Débora Cikes, Domagoj Nagy, Vanja Weidinger, Adelheid Wolf, Alexandra Reither, Harald Chabloz, Antoine Kavirayani, Anoop Rao, Shuan Andrews, Nick Latremoliere, Alban Costigan, Michael Douglas, Gillian Freitas, Fernando Cini Pifl, Christian Walz, Roger Konrat, Robert Mahad, Don J. Koslov, Andrey V. Latini, Alexandra Isacson, Ole Harkany, Tibor Hallett, Penelope J. Bagby, Stefan Woolf, Clifford J. Channon, Keith M. Je, Hyunsoo Shawn Penninger, Josef M. |
author_sort | Cronin, Shane J. F. |
collection | PubMed |
description | Dopa-responsive dystonia (DRD) and Parkinson’s disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies have identified variants of GTP cyclohydrolase-1 (GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) synthesis, as causative for these movement disorders. Here, we show that genetic and pharmacological inhibition of BH4 synthesis in mice and human midbrain-like organoids accurately recapitulates motor, behavioral and biochemical characteristics of these human diseases, with severity of the phenotype correlating with extent of BH4 deficiency. We also show that BH4 deficiency increases sensitivities to several PD-related stressors in mice and PD human cells, resulting in worse behavioral and physiological outcomes. Conversely, genetic and pharmacological augmentation of BH4 protects mice from genetically- and chemically induced PD-related stressors. Importantly, increasing BH4 levels also protects primary cells from PD-affected individuals and human midbrain-like organoids (hMLOs) from these stressors. Mechanistically, BH4 not only serves as an essential cofactor for dopamine synthesis, but also independently regulates tyrosine hydroxylase levels, protects against ferroptosis, scavenges mitochondrial ROS, maintains neuronal excitability and promotes mitochondrial ATP production, thereby enhancing mitochondrial fitness and cellular respiration in multiple preclinical PD animal models, human dopaminergic midbrain-like organoids and primary cells from PD-affected individuals. Our findings pinpoint the BH4 pathway as a key metabolic program at the intersection of multiple protective mechanisms for the health and function of midbrain dopaminergic neurons, identifying it as a potential therapeutic target for PD. |
format | Online Article Text |
id | pubmed-10197517 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-101975172023-05-20 Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons Cronin, Shane J. F. Yu, Weonjin Hale, Ashley Licht-Mayer, Simon Crabtree, Mark J Korecka, Joanna A. Tretiakov, Evgenii O. Sealey-Cardona, Marco Somlyay, Mate Onji, Masahiro An, Meilin Fox, Jesse D. Turnes, Bruna Lenfers Gomez-Diaz, Carlos da Luz Scheffer, Débora Cikes, Domagoj Nagy, Vanja Weidinger, Adelheid Wolf, Alexandra Reither, Harald Chabloz, Antoine Kavirayani, Anoop Rao, Shuan Andrews, Nick Latremoliere, Alban Costigan, Michael Douglas, Gillian Freitas, Fernando Cini Pifl, Christian Walz, Roger Konrat, Robert Mahad, Don J. Koslov, Andrey V. Latini, Alexandra Isacson, Ole Harkany, Tibor Hallett, Penelope J. Bagby, Stefan Woolf, Clifford J. Channon, Keith M. Je, Hyunsoo Shawn Penninger, Josef M. bioRxiv Article Dopa-responsive dystonia (DRD) and Parkinson’s disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies have identified variants of GTP cyclohydrolase-1 (GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) synthesis, as causative for these movement disorders. Here, we show that genetic and pharmacological inhibition of BH4 synthesis in mice and human midbrain-like organoids accurately recapitulates motor, behavioral and biochemical characteristics of these human diseases, with severity of the phenotype correlating with extent of BH4 deficiency. We also show that BH4 deficiency increases sensitivities to several PD-related stressors in mice and PD human cells, resulting in worse behavioral and physiological outcomes. Conversely, genetic and pharmacological augmentation of BH4 protects mice from genetically- and chemically induced PD-related stressors. Importantly, increasing BH4 levels also protects primary cells from PD-affected individuals and human midbrain-like organoids (hMLOs) from these stressors. Mechanistically, BH4 not only serves as an essential cofactor for dopamine synthesis, but also independently regulates tyrosine hydroxylase levels, protects against ferroptosis, scavenges mitochondrial ROS, maintains neuronal excitability and promotes mitochondrial ATP production, thereby enhancing mitochondrial fitness and cellular respiration in multiple preclinical PD animal models, human dopaminergic midbrain-like organoids and primary cells from PD-affected individuals. Our findings pinpoint the BH4 pathway as a key metabolic program at the intersection of multiple protective mechanisms for the health and function of midbrain dopaminergic neurons, identifying it as a potential therapeutic target for PD. Cold Spring Harbor Laboratory 2023-05-08 /pmc/articles/PMC10197517/ /pubmed/37214873 http://dx.doi.org/10.1101/2023.05.08.539795 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Cronin, Shane J. F. Yu, Weonjin Hale, Ashley Licht-Mayer, Simon Crabtree, Mark J Korecka, Joanna A. Tretiakov, Evgenii O. Sealey-Cardona, Marco Somlyay, Mate Onji, Masahiro An, Meilin Fox, Jesse D. Turnes, Bruna Lenfers Gomez-Diaz, Carlos da Luz Scheffer, Débora Cikes, Domagoj Nagy, Vanja Weidinger, Adelheid Wolf, Alexandra Reither, Harald Chabloz, Antoine Kavirayani, Anoop Rao, Shuan Andrews, Nick Latremoliere, Alban Costigan, Michael Douglas, Gillian Freitas, Fernando Cini Pifl, Christian Walz, Roger Konrat, Robert Mahad, Don J. Koslov, Andrey V. Latini, Alexandra Isacson, Ole Harkany, Tibor Hallett, Penelope J. Bagby, Stefan Woolf, Clifford J. Channon, Keith M. Je, Hyunsoo Shawn Penninger, Josef M. Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons |
title | Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons |
title_full | Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons |
title_fullStr | Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons |
title_full_unstemmed | Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons |
title_short | Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons |
title_sort | crucial neuroprotective roles of the metabolite bh4 in dopaminergic neurons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197517/ https://www.ncbi.nlm.nih.gov/pubmed/37214873 http://dx.doi.org/10.1101/2023.05.08.539795 |
work_keys_str_mv | AT croninshanejf crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT yuweonjin crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT haleashley crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT lichtmayersimon crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT crabtreemarkj crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT koreckajoannaa crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT tretiakovevgeniio crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT sealeycardonamarco crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT somlyaymate crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT onjimasahiro crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT anmeilin crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT foxjessed crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT turnesbrunalenfers crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT gomezdiazcarlos crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT daluzschefferdebora crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT cikesdomagoj crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT nagyvanja crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT weidingeradelheid crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT wolfalexandra crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT reitherharald crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT chablozantoine crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT kavirayanianoop crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT raoshuan crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT andrewsnick crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT latremolierealban crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT costiganmichael crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT douglasgillian crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT freitasfernandocini crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT piflchristian crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT walzroger crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT konratrobert crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT mahaddonj crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT koslovandreyv crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT latinialexandra crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT isacsonole crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT harkanytibor crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT hallettpenelopej crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT bagbystefan crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT woolfcliffordj crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT channonkeithm crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT jehyunsooshawn crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons AT penningerjosefm crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons |