_version_ 1785044569004441600
author Cronin, Shane J. F.
Yu, Weonjin
Hale, Ashley
Licht-Mayer, Simon
Crabtree, Mark J
Korecka, Joanna A.
Tretiakov, Evgenii O.
Sealey-Cardona, Marco
Somlyay, Mate
Onji, Masahiro
An, Meilin
Fox, Jesse D.
Turnes, Bruna Lenfers
Gomez-Diaz, Carlos
da Luz Scheffer, Débora
Cikes, Domagoj
Nagy, Vanja
Weidinger, Adelheid
Wolf, Alexandra
Reither, Harald
Chabloz, Antoine
Kavirayani, Anoop
Rao, Shuan
Andrews, Nick
Latremoliere, Alban
Costigan, Michael
Douglas, Gillian
Freitas, Fernando Cini
Pifl, Christian
Walz, Roger
Konrat, Robert
Mahad, Don J.
Koslov, Andrey V.
Latini, Alexandra
Isacson, Ole
Harkany, Tibor
Hallett, Penelope J.
Bagby, Stefan
Woolf, Clifford J.
Channon, Keith M.
Je, Hyunsoo Shawn
Penninger, Josef M.
author_facet Cronin, Shane J. F.
Yu, Weonjin
Hale, Ashley
Licht-Mayer, Simon
Crabtree, Mark J
Korecka, Joanna A.
Tretiakov, Evgenii O.
Sealey-Cardona, Marco
Somlyay, Mate
Onji, Masahiro
An, Meilin
Fox, Jesse D.
Turnes, Bruna Lenfers
Gomez-Diaz, Carlos
da Luz Scheffer, Débora
Cikes, Domagoj
Nagy, Vanja
Weidinger, Adelheid
Wolf, Alexandra
Reither, Harald
Chabloz, Antoine
Kavirayani, Anoop
Rao, Shuan
Andrews, Nick
Latremoliere, Alban
Costigan, Michael
Douglas, Gillian
Freitas, Fernando Cini
Pifl, Christian
Walz, Roger
Konrat, Robert
Mahad, Don J.
Koslov, Andrey V.
Latini, Alexandra
Isacson, Ole
Harkany, Tibor
Hallett, Penelope J.
Bagby, Stefan
Woolf, Clifford J.
Channon, Keith M.
Je, Hyunsoo Shawn
Penninger, Josef M.
author_sort Cronin, Shane J. F.
collection PubMed
description Dopa-responsive dystonia (DRD) and Parkinson’s disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies have identified variants of GTP cyclohydrolase-1 (GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) synthesis, as causative for these movement disorders. Here, we show that genetic and pharmacological inhibition of BH4 synthesis in mice and human midbrain-like organoids accurately recapitulates motor, behavioral and biochemical characteristics of these human diseases, with severity of the phenotype correlating with extent of BH4 deficiency. We also show that BH4 deficiency increases sensitivities to several PD-related stressors in mice and PD human cells, resulting in worse behavioral and physiological outcomes. Conversely, genetic and pharmacological augmentation of BH4 protects mice from genetically- and chemically induced PD-related stressors. Importantly, increasing BH4 levels also protects primary cells from PD-affected individuals and human midbrain-like organoids (hMLOs) from these stressors. Mechanistically, BH4 not only serves as an essential cofactor for dopamine synthesis, but also independently regulates tyrosine hydroxylase levels, protects against ferroptosis, scavenges mitochondrial ROS, maintains neuronal excitability and promotes mitochondrial ATP production, thereby enhancing mitochondrial fitness and cellular respiration in multiple preclinical PD animal models, human dopaminergic midbrain-like organoids and primary cells from PD-affected individuals. Our findings pinpoint the BH4 pathway as a key metabolic program at the intersection of multiple protective mechanisms for the health and function of midbrain dopaminergic neurons, identifying it as a potential therapeutic target for PD.
format Online
Article
Text
id pubmed-10197517
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-101975172023-05-20 Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons Cronin, Shane J. F. Yu, Weonjin Hale, Ashley Licht-Mayer, Simon Crabtree, Mark J Korecka, Joanna A. Tretiakov, Evgenii O. Sealey-Cardona, Marco Somlyay, Mate Onji, Masahiro An, Meilin Fox, Jesse D. Turnes, Bruna Lenfers Gomez-Diaz, Carlos da Luz Scheffer, Débora Cikes, Domagoj Nagy, Vanja Weidinger, Adelheid Wolf, Alexandra Reither, Harald Chabloz, Antoine Kavirayani, Anoop Rao, Shuan Andrews, Nick Latremoliere, Alban Costigan, Michael Douglas, Gillian Freitas, Fernando Cini Pifl, Christian Walz, Roger Konrat, Robert Mahad, Don J. Koslov, Andrey V. Latini, Alexandra Isacson, Ole Harkany, Tibor Hallett, Penelope J. Bagby, Stefan Woolf, Clifford J. Channon, Keith M. Je, Hyunsoo Shawn Penninger, Josef M. bioRxiv Article Dopa-responsive dystonia (DRD) and Parkinson’s disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies have identified variants of GTP cyclohydrolase-1 (GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) synthesis, as causative for these movement disorders. Here, we show that genetic and pharmacological inhibition of BH4 synthesis in mice and human midbrain-like organoids accurately recapitulates motor, behavioral and biochemical characteristics of these human diseases, with severity of the phenotype correlating with extent of BH4 deficiency. We also show that BH4 deficiency increases sensitivities to several PD-related stressors in mice and PD human cells, resulting in worse behavioral and physiological outcomes. Conversely, genetic and pharmacological augmentation of BH4 protects mice from genetically- and chemically induced PD-related stressors. Importantly, increasing BH4 levels also protects primary cells from PD-affected individuals and human midbrain-like organoids (hMLOs) from these stressors. Mechanistically, BH4 not only serves as an essential cofactor for dopamine synthesis, but also independently regulates tyrosine hydroxylase levels, protects against ferroptosis, scavenges mitochondrial ROS, maintains neuronal excitability and promotes mitochondrial ATP production, thereby enhancing mitochondrial fitness and cellular respiration in multiple preclinical PD animal models, human dopaminergic midbrain-like organoids and primary cells from PD-affected individuals. Our findings pinpoint the BH4 pathway as a key metabolic program at the intersection of multiple protective mechanisms for the health and function of midbrain dopaminergic neurons, identifying it as a potential therapeutic target for PD. Cold Spring Harbor Laboratory 2023-05-08 /pmc/articles/PMC10197517/ /pubmed/37214873 http://dx.doi.org/10.1101/2023.05.08.539795 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Cronin, Shane J. F.
Yu, Weonjin
Hale, Ashley
Licht-Mayer, Simon
Crabtree, Mark J
Korecka, Joanna A.
Tretiakov, Evgenii O.
Sealey-Cardona, Marco
Somlyay, Mate
Onji, Masahiro
An, Meilin
Fox, Jesse D.
Turnes, Bruna Lenfers
Gomez-Diaz, Carlos
da Luz Scheffer, Débora
Cikes, Domagoj
Nagy, Vanja
Weidinger, Adelheid
Wolf, Alexandra
Reither, Harald
Chabloz, Antoine
Kavirayani, Anoop
Rao, Shuan
Andrews, Nick
Latremoliere, Alban
Costigan, Michael
Douglas, Gillian
Freitas, Fernando Cini
Pifl, Christian
Walz, Roger
Konrat, Robert
Mahad, Don J.
Koslov, Andrey V.
Latini, Alexandra
Isacson, Ole
Harkany, Tibor
Hallett, Penelope J.
Bagby, Stefan
Woolf, Clifford J.
Channon, Keith M.
Je, Hyunsoo Shawn
Penninger, Josef M.
Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons
title Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons
title_full Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons
title_fullStr Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons
title_full_unstemmed Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons
title_short Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons
title_sort crucial neuroprotective roles of the metabolite bh4 in dopaminergic neurons
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197517/
https://www.ncbi.nlm.nih.gov/pubmed/37214873
http://dx.doi.org/10.1101/2023.05.08.539795
work_keys_str_mv AT croninshanejf crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT yuweonjin crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT haleashley crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT lichtmayersimon crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT crabtreemarkj crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT koreckajoannaa crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT tretiakovevgeniio crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT sealeycardonamarco crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT somlyaymate crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT onjimasahiro crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT anmeilin crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT foxjessed crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT turnesbrunalenfers crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT gomezdiazcarlos crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT daluzschefferdebora crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT cikesdomagoj crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT nagyvanja crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT weidingeradelheid crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT wolfalexandra crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT reitherharald crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT chablozantoine crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT kavirayanianoop crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT raoshuan crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT andrewsnick crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT latremolierealban crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT costiganmichael crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT douglasgillian crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT freitasfernandocini crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT piflchristian crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT walzroger crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT konratrobert crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT mahaddonj crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT koslovandreyv crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT latinialexandra crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT isacsonole crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT harkanytibor crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT hallettpenelopej crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT bagbystefan crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT woolfcliffordj crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT channonkeithm crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT jehyunsooshawn crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons
AT penningerjosefm crucialneuroprotectiverolesofthemetabolitebh4indopaminergicneurons