Cargando…

Dimeric Transmembrane Structure of the SARS-CoV-2 E Protein

The SARS-CoV-2 E protein is a transmembrane (TM) protein with its N-terminus exposed on the external surface of the virus. Here, the TM structure of the E protein is characterized by oriented sample and magic angle spinning solid-state NMR in lipid bilayers and refined by molecular dynamics simulati...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Rongfu, Qin, Huajun, Prasad, Ramesh, Fu, Riqiang, Zhou, Huan-Xiang, Cross, Timothy A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197518/
https://www.ncbi.nlm.nih.gov/pubmed/37214926
http://dx.doi.org/10.1101/2023.05.07.539752
Descripción
Sumario:The SARS-CoV-2 E protein is a transmembrane (TM) protein with its N-terminus exposed on the external surface of the virus. Here, the TM structure of the E protein is characterized by oriented sample and magic angle spinning solid-state NMR in lipid bilayers and refined by molecular dynamics simulations. This protein has been found to be a pentamer, with a hydrophobic pore that appears to function as an ion channel. We identified only a symmetric helix-helix interface, leading to a dimeric structure that does not support channel activity. The two helices have a tilt angle of only 6°, resulting in an extended interface dominated by Leu and Val sidechains. While residues Val14-Thr35 are almost all buried in the hydrophobic region of the membrane, Asn15 lines a water-filled pocket that potentially serves as a drug-binding site. The E and other viral proteins may adopt different oligomeric states to help perform multiple functions.