Cargando…

SARS-COV-2 Spike Protein Fragment eases Amyloidogenesis of α-Synuclein

Parkinson’s Disease is accompanied by presence of amyloids in the brain formed of α-synuclein chains. Correlation between COVID-19 and the onset of Parkinson’s disease let to the idea that amyloidogenic segments in SARS-COV-2 proteins can induce aggregation of α-synuclein. Using molecular dynamic si...

Descripción completa

Detalles Bibliográficos
Autores principales: Chesney, Andrew D., Maiti, Buddhadev, Hansmann, Ulrich H. E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197603/
https://www.ncbi.nlm.nih.gov/pubmed/37214999
http://dx.doi.org/10.1101/2023.05.06.539715
Descripción
Sumario:Parkinson’s Disease is accompanied by presence of amyloids in the brain formed of α-synuclein chains. Correlation between COVID-19 and the onset of Parkinson’s disease let to the idea that amyloidogenic segments in SARS-COV-2 proteins can induce aggregation of α-synuclein. Using molecular dynamic simulations, we show that the fragment FKNIDGYFKI of the spike protein, which is unique for SARS-COV-2, shifts preferentially the ensemble of α-synuclein monomer towards rod-like fibril seeding conformations, and at the same time stabilizes differentially this polymorph over the competing twister-like structure. Our results are compared with earlier work relying on a different protein fragment that is not specific for SARS-COV-2.