Cargando…
SARS-COV-2 Spike Protein Fragment eases Amyloidogenesis of α-Synuclein
Parkinson’s Disease is accompanied by presence of amyloids in the brain formed of α-synuclein chains. Correlation between COVID-19 and the onset of Parkinson’s disease let to the idea that amyloidogenic segments in SARS-COV-2 proteins can induce aggregation of α-synuclein. Using molecular dynamic si...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197603/ https://www.ncbi.nlm.nih.gov/pubmed/37214999 http://dx.doi.org/10.1101/2023.05.06.539715 |
Sumario: | Parkinson’s Disease is accompanied by presence of amyloids in the brain formed of α-synuclein chains. Correlation between COVID-19 and the onset of Parkinson’s disease let to the idea that amyloidogenic segments in SARS-COV-2 proteins can induce aggregation of α-synuclein. Using molecular dynamic simulations, we show that the fragment FKNIDGYFKI of the spike protein, which is unique for SARS-COV-2, shifts preferentially the ensemble of α-synuclein monomer towards rod-like fibril seeding conformations, and at the same time stabilizes differentially this polymorph over the competing twister-like structure. Our results are compared with earlier work relying on a different protein fragment that is not specific for SARS-COV-2. |
---|