Cargando…

The Regulator FleQ Post-Transcriptionally Regulates the Production of RTX Adhesins by Pseudomonas fluorescens

Biofilm formation by the Gram-negative gammaproteobacterium Pseudomonas fluorescens relies on the production of the repeat-in-toxin (RTX) adhesins LapA and MapA in the cytoplasm, secretion of these adhesins through their respective type 1 secretion systems, and retention at the cell surface. Publish...

Descripción completa

Detalles Bibliográficos
Autores principales: Pastora, Alexander B., O’Toole, George A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197612/
https://www.ncbi.nlm.nih.gov/pubmed/37214974
http://dx.doi.org/10.1101/2023.05.09.540025
Descripción
Sumario:Biofilm formation by the Gram-negative gammaproteobacterium Pseudomonas fluorescens relies on the production of the repeat-in-toxin (RTX) adhesins LapA and MapA in the cytoplasm, secretion of these adhesins through their respective type 1 secretion systems, and retention at the cell surface. Published work has shown that retention of the adhesins occurs via a post-translational mechanism involving the cyclic-di-GMP receptor LapD and the protease LapG. However, little is known about the underlying mechanisms that regulate the production of these adhesins. Here, we demonstrate that the master regulator FleQ modulates biofilm formation by post-transcriptionally regulating the production of LapA and MapA. We find that a ΔfleQ mutant has a biofilm formation defect compared to the WT strain, which is attributed in part to a decrease in LapA and MapA production, despite the ΔfleQ mutant having increased levels of lapA and mapA transcripts compared to the WT strain. Through transposon mutagenesis and subsequent genetic analysis, we found that over-stimulation of the Gac/Rsm pathway partially rescues biofilm formation in the ΔfleQ mutant background. Collectively, these findings provide evidence that FleQ regulates biofilm formation by post-transcriptionally regulating the production of LapA and MapA, and that activation of the Gac/Rsm pathway can enhance biofilm formation by P. fluorescens.