Cargando…
Extensive T1-weighted MRI Preprocessing Improves Generalizability of Deep Brain Age Prediction Models
Brain age is an estimate of chronological age obtained from T1-weighted magnetic resonance images (T1w MRI) and represents a simple diagnostic biomarker of brain ageing and associated diseases. While the current best accuracy of brain age predictions on T1w MRIs of healthy subjects ranges from two t...
Autores principales: | Dular, Lara, Pernuš, Franjo, Špiclin, Žiga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197652/ https://www.ncbi.nlm.nih.gov/pubmed/37214863 http://dx.doi.org/10.1101/2023.05.10.540134 |
Ejemplares similares
-
Deep Shape Features for Predicting Future Intracranial Aneurysm Growth
por: Bizjak, Žiga, et al.
Publicado: (2021) -
A Systematic Review of Deep-Learning Methods for Intracranial Aneurysm Detection in CT Angiography
por: Bizjak, Žiga, et al.
Publicado: (2023) -
MCDataset: a public reference dataset of Monte Carlo simulated quantities for multilayered and voxelated tissues computed by massively parallel PyXOpto Python package
por: Bürmen, Miran, et al.
Publicado: (2022) -
Deep‐Learning‐Based Preprocessing for Quantitative Myocardial Perfusion MRI
por: Scannell, Cian M., et al.
Publicado: (2019) -
Improving Structural MRI Preprocessing with Hybrid Transformer GANs
por: Grigas, Ovidijus, et al.
Publicado: (2023)