Cargando…

Oryza CLIMtools: A Genome-Environment Association Resource Reveals Adaptive Roles for Heterotrimeric G Proteins in the Regulation of Rice Agronomic Traits

Modern crop varieties display a degree of mismatch between their current distributions and the suitability of the local climate for their productivity. To this end, we present Oryza CLIMtools (https://gramene.org/CLIMtools/oryza_v1.0/), the first resource for pan-genome prediction of climate-associa...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferrero-Serrano, Ángel, Chakravorty, David, Kirven, Kobie J., Assmann, Sarah M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197702/
https://www.ncbi.nlm.nih.gov/pubmed/37214799
http://dx.doi.org/10.1101/2023.05.10.540241
Descripción
Sumario:Modern crop varieties display a degree of mismatch between their current distributions and the suitability of the local climate for their productivity. To this end, we present Oryza CLIMtools (https://gramene.org/CLIMtools/oryza_v1.0/), the first resource for pan-genome prediction of climate-associated genetic variants in a crop species. Oryza CLIMtools consists of interactive web-based databases that allow the user to: i) explore the local environments of traditional rice varieties (landraces) in South-Eastern Asia, and; ii) investigate the environment by genome associations for 658 Indica and 283 Japonica rice landrace accessions collected from geo-referenced local environments and included in the 3K Rice Genomes Project. We exemplify the value of these resources, identifying an interplay between flowering time and temperature in the local environment that is facilitated by adaptive natural variation in OsHD2 and disrupted by a natural variant in OsSOC1. Prior QTL analysis has suggested the importance of heterotrimeric G proteins in the control of agronomic traits. Accordingly, we analyzed the climate associations of natural variants in the different heterotrimeric G protein subunits. We identified a coordinated role of G proteins in adaptation to the prevailing Potential Evapotranspiration gradient and their regulation of key agronomic traits including plant height and seed and panicle length. We conclude by highlighting the prospect of targeting heterotrimeric G proteins to produce crops that are climate resilient.