Cargando…
Application of Machine Learning to the Prediction of Cancer-Associated Venous Thromboembolism
Venous thromboembolism (VTE) is a common and impactful complication of cancer. Several clinical prediction rules have been devised to estimate the risk of a thrombotic event in this patient population, however they are associated with limitations. We aimed to develop a predictive model of cancer-ass...
Autores principales: | Mantha, Simon, Chatterjee, Subrata, Singh, Rohan, Cadley, John, Poon, Chester, Chatterjee, Avijit, Kelly, Daniel, Sterpi, Michelle, Soff, Gerald, Zwicker, Jeffrey, Soria, José, Ruiz, Magdalena, Muñoz, Andres, Arcila, Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197737/ https://www.ncbi.nlm.nih.gov/pubmed/37214902 http://dx.doi.org/10.21203/rs.3.rs-2870367/v1 |
Ejemplares similares
-
Implementing a Clinical Decision Tool to Improve Oncologic Venous Thromboembolism Management
por: Majeed, Jibran, et al.
Publicado: (2022) -
A review of venous thromboembolism in India
por: Tabassum, Heena, et al.
Publicado: (2023) -
Cancer‐associated venous thromboembolism: Treatment and prevention with rivaroxaban
por: Bauersachs, Rupert, et al.
Publicado: (2020) -
Assessing the risk of venous thromboembolic events in women taking progestin-only contraception: a meta-analysis
por: Mantha, S, et al.
Publicado: (2012) -
Treatment of central venous catheter‐associated deep venous thrombosis in cancer patients with rivaroxaban
por: Laube, Eva S., et al.
Publicado: (2016)