Cargando…
Control of Polymers’ Amorphous-crystalline Transition for Hydrogel Bioelectronics Miniaturization and Multifunctional Integration
Bioelectronic devices made of soft elastic materials exhibit motion-adaptive properties suitable for brain-machine interfaces and for investigating complex neural circuits. While two-dimensional microfabrication strategies enable miniaturizing devices to access delicate nerve structures, creating 3D...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197780/ https://www.ncbi.nlm.nih.gov/pubmed/37214970 http://dx.doi.org/10.21203/rs.3.rs-2864872/v1 |
_version_ | 1785044613582553088 |
---|---|
author | Huang, Sizhe Liu, Xinyue Lin, Shaoting Glynn, Christopher Felix, Kayla Sahasrabudhe, Atharva Maley, Collin Xu, Jingyi Chen, Weixuan Hong, Eunji Crosby, Alfred J. Wang, Qianbin Rao, Siyuan |
author_facet | Huang, Sizhe Liu, Xinyue Lin, Shaoting Glynn, Christopher Felix, Kayla Sahasrabudhe, Atharva Maley, Collin Xu, Jingyi Chen, Weixuan Hong, Eunji Crosby, Alfred J. Wang, Qianbin Rao, Siyuan |
author_sort | Huang, Sizhe |
collection | PubMed |
description | Bioelectronic devices made of soft elastic materials exhibit motion-adaptive properties suitable for brain-machine interfaces and for investigating complex neural circuits. While two-dimensional microfabrication strategies enable miniaturizing devices to access delicate nerve structures, creating 3D architecture for expansive implementation requires more accessible and scalable manufacturing approaches. Here we present a fabrication strategy through the control of metamorphic polymers’ amorphous-crystalline transition (COMPACT), for hydrogel bioelectronics with miniaturized fiber shape and multifunctional interrogation of neural circuits. By introducing multiple cross-linkers, acidification treatment, and oriented polymeric crystalline growth under deformation, we observed about an 80% diameter decrease in chemically cross-linked polyvinyl alcohol (PVA) hydrogel fibers, stably maintained in a fully hydrated state. We revealed that the addition of cross-linkers and acidification facilitated the oriented polymetric crystalline growth under mechanical stretching, which contributed to the desired hydrogel fiber diameter decrease. Our approach enabled the control of hydrogels’ properties, including refractive index (RI 1.37-1.40 at 480 nm), light transmission (> 96%), stretchability (95% - 111%), and elastic modulus (10-63 MPa). To exploit these properties, we fabricated step-index hydrogel optical probes with contrasting RIs and applied them in optogenetics and photometric recordings in the mouse brain region of the ventral tegmental area (VTA) with concurrent social behavioral assessment. To extend COMPACT hydrogel multifunctional scaffolds to assimilate conductive nanomaterials and integrate multiple components of optical waveguide and electrodes, we developed carbon nanotubes (CNTs)-PVA hydrogel microelectrodes for hindlimb muscle electromyographic and brain electrophysiological recordings of light-triggered neural activities in transgenic mice expressing Channelrhodopsin-2 (ChR2). |
format | Online Article Text |
id | pubmed-10197780 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Journal Experts |
record_format | MEDLINE/PubMed |
spelling | pubmed-101977802023-05-20 Control of Polymers’ Amorphous-crystalline Transition for Hydrogel Bioelectronics Miniaturization and Multifunctional Integration Huang, Sizhe Liu, Xinyue Lin, Shaoting Glynn, Christopher Felix, Kayla Sahasrabudhe, Atharva Maley, Collin Xu, Jingyi Chen, Weixuan Hong, Eunji Crosby, Alfred J. Wang, Qianbin Rao, Siyuan Res Sq Article Bioelectronic devices made of soft elastic materials exhibit motion-adaptive properties suitable for brain-machine interfaces and for investigating complex neural circuits. While two-dimensional microfabrication strategies enable miniaturizing devices to access delicate nerve structures, creating 3D architecture for expansive implementation requires more accessible and scalable manufacturing approaches. Here we present a fabrication strategy through the control of metamorphic polymers’ amorphous-crystalline transition (COMPACT), for hydrogel bioelectronics with miniaturized fiber shape and multifunctional interrogation of neural circuits. By introducing multiple cross-linkers, acidification treatment, and oriented polymeric crystalline growth under deformation, we observed about an 80% diameter decrease in chemically cross-linked polyvinyl alcohol (PVA) hydrogel fibers, stably maintained in a fully hydrated state. We revealed that the addition of cross-linkers and acidification facilitated the oriented polymetric crystalline growth under mechanical stretching, which contributed to the desired hydrogel fiber diameter decrease. Our approach enabled the control of hydrogels’ properties, including refractive index (RI 1.37-1.40 at 480 nm), light transmission (> 96%), stretchability (95% - 111%), and elastic modulus (10-63 MPa). To exploit these properties, we fabricated step-index hydrogel optical probes with contrasting RIs and applied them in optogenetics and photometric recordings in the mouse brain region of the ventral tegmental area (VTA) with concurrent social behavioral assessment. To extend COMPACT hydrogel multifunctional scaffolds to assimilate conductive nanomaterials and integrate multiple components of optical waveguide and electrodes, we developed carbon nanotubes (CNTs)-PVA hydrogel microelectrodes for hindlimb muscle electromyographic and brain electrophysiological recordings of light-triggered neural activities in transgenic mice expressing Channelrhodopsin-2 (ChR2). American Journal Experts 2023-05-09 /pmc/articles/PMC10197780/ /pubmed/37214970 http://dx.doi.org/10.21203/rs.3.rs-2864872/v1 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Huang, Sizhe Liu, Xinyue Lin, Shaoting Glynn, Christopher Felix, Kayla Sahasrabudhe, Atharva Maley, Collin Xu, Jingyi Chen, Weixuan Hong, Eunji Crosby, Alfred J. Wang, Qianbin Rao, Siyuan Control of Polymers’ Amorphous-crystalline Transition for Hydrogel Bioelectronics Miniaturization and Multifunctional Integration |
title | Control of Polymers’ Amorphous-crystalline Transition for Hydrogel Bioelectronics Miniaturization and Multifunctional Integration |
title_full | Control of Polymers’ Amorphous-crystalline Transition for Hydrogel Bioelectronics Miniaturization and Multifunctional Integration |
title_fullStr | Control of Polymers’ Amorphous-crystalline Transition for Hydrogel Bioelectronics Miniaturization and Multifunctional Integration |
title_full_unstemmed | Control of Polymers’ Amorphous-crystalline Transition for Hydrogel Bioelectronics Miniaturization and Multifunctional Integration |
title_short | Control of Polymers’ Amorphous-crystalline Transition for Hydrogel Bioelectronics Miniaturization and Multifunctional Integration |
title_sort | control of polymers’ amorphous-crystalline transition for hydrogel bioelectronics miniaturization and multifunctional integration |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197780/ https://www.ncbi.nlm.nih.gov/pubmed/37214970 http://dx.doi.org/10.21203/rs.3.rs-2864872/v1 |
work_keys_str_mv | AT huangsizhe controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration AT liuxinyue controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration AT linshaoting controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration AT glynnchristopher controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration AT felixkayla controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration AT sahasrabudheatharva controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration AT maleycollin controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration AT xujingyi controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration AT chenweixuan controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration AT hongeunji controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration AT crosbyalfredj controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration AT wangqianbin controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration AT raosiyuan controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration |