Cargando…

Control of Polymers’ Amorphous-crystalline Transition for Hydrogel Bioelectronics Miniaturization and Multifunctional Integration

Bioelectronic devices made of soft elastic materials exhibit motion-adaptive properties suitable for brain-machine interfaces and for investigating complex neural circuits. While two-dimensional microfabrication strategies enable miniaturizing devices to access delicate nerve structures, creating 3D...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Sizhe, Liu, Xinyue, Lin, Shaoting, Glynn, Christopher, Felix, Kayla, Sahasrabudhe, Atharva, Maley, Collin, Xu, Jingyi, Chen, Weixuan, Hong, Eunji, Crosby, Alfred J., Wang, Qianbin, Rao, Siyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197780/
https://www.ncbi.nlm.nih.gov/pubmed/37214970
http://dx.doi.org/10.21203/rs.3.rs-2864872/v1
_version_ 1785044613582553088
author Huang, Sizhe
Liu, Xinyue
Lin, Shaoting
Glynn, Christopher
Felix, Kayla
Sahasrabudhe, Atharva
Maley, Collin
Xu, Jingyi
Chen, Weixuan
Hong, Eunji
Crosby, Alfred J.
Wang, Qianbin
Rao, Siyuan
author_facet Huang, Sizhe
Liu, Xinyue
Lin, Shaoting
Glynn, Christopher
Felix, Kayla
Sahasrabudhe, Atharva
Maley, Collin
Xu, Jingyi
Chen, Weixuan
Hong, Eunji
Crosby, Alfred J.
Wang, Qianbin
Rao, Siyuan
author_sort Huang, Sizhe
collection PubMed
description Bioelectronic devices made of soft elastic materials exhibit motion-adaptive properties suitable for brain-machine interfaces and for investigating complex neural circuits. While two-dimensional microfabrication strategies enable miniaturizing devices to access delicate nerve structures, creating 3D architecture for expansive implementation requires more accessible and scalable manufacturing approaches. Here we present a fabrication strategy through the control of metamorphic polymers’ amorphous-crystalline transition (COMPACT), for hydrogel bioelectronics with miniaturized fiber shape and multifunctional interrogation of neural circuits. By introducing multiple cross-linkers, acidification treatment, and oriented polymeric crystalline growth under deformation, we observed about an 80% diameter decrease in chemically cross-linked polyvinyl alcohol (PVA) hydrogel fibers, stably maintained in a fully hydrated state. We revealed that the addition of cross-linkers and acidification facilitated the oriented polymetric crystalline growth under mechanical stretching, which contributed to the desired hydrogel fiber diameter decrease. Our approach enabled the control of hydrogels’ properties, including refractive index (RI 1.37-1.40 at 480 nm), light transmission (> 96%), stretchability (95% - 111%), and elastic modulus (10-63 MPa). To exploit these properties, we fabricated step-index hydrogel optical probes with contrasting RIs and applied them in optogenetics and photometric recordings in the mouse brain region of the ventral tegmental area (VTA) with concurrent social behavioral assessment. To extend COMPACT hydrogel multifunctional scaffolds to assimilate conductive nanomaterials and integrate multiple components of optical waveguide and electrodes, we developed carbon nanotubes (CNTs)-PVA hydrogel microelectrodes for hindlimb muscle electromyographic and brain electrophysiological recordings of light-triggered neural activities in transgenic mice expressing Channelrhodopsin-2 (ChR2).
format Online
Article
Text
id pubmed-10197780
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Journal Experts
record_format MEDLINE/PubMed
spelling pubmed-101977802023-05-20 Control of Polymers’ Amorphous-crystalline Transition for Hydrogel Bioelectronics Miniaturization and Multifunctional Integration Huang, Sizhe Liu, Xinyue Lin, Shaoting Glynn, Christopher Felix, Kayla Sahasrabudhe, Atharva Maley, Collin Xu, Jingyi Chen, Weixuan Hong, Eunji Crosby, Alfred J. Wang, Qianbin Rao, Siyuan Res Sq Article Bioelectronic devices made of soft elastic materials exhibit motion-adaptive properties suitable for brain-machine interfaces and for investigating complex neural circuits. While two-dimensional microfabrication strategies enable miniaturizing devices to access delicate nerve structures, creating 3D architecture for expansive implementation requires more accessible and scalable manufacturing approaches. Here we present a fabrication strategy through the control of metamorphic polymers’ amorphous-crystalline transition (COMPACT), for hydrogel bioelectronics with miniaturized fiber shape and multifunctional interrogation of neural circuits. By introducing multiple cross-linkers, acidification treatment, and oriented polymeric crystalline growth under deformation, we observed about an 80% diameter decrease in chemically cross-linked polyvinyl alcohol (PVA) hydrogel fibers, stably maintained in a fully hydrated state. We revealed that the addition of cross-linkers and acidification facilitated the oriented polymetric crystalline growth under mechanical stretching, which contributed to the desired hydrogel fiber diameter decrease. Our approach enabled the control of hydrogels’ properties, including refractive index (RI 1.37-1.40 at 480 nm), light transmission (> 96%), stretchability (95% - 111%), and elastic modulus (10-63 MPa). To exploit these properties, we fabricated step-index hydrogel optical probes with contrasting RIs and applied them in optogenetics and photometric recordings in the mouse brain region of the ventral tegmental area (VTA) with concurrent social behavioral assessment. To extend COMPACT hydrogel multifunctional scaffolds to assimilate conductive nanomaterials and integrate multiple components of optical waveguide and electrodes, we developed carbon nanotubes (CNTs)-PVA hydrogel microelectrodes for hindlimb muscle electromyographic and brain electrophysiological recordings of light-triggered neural activities in transgenic mice expressing Channelrhodopsin-2 (ChR2). American Journal Experts 2023-05-09 /pmc/articles/PMC10197780/ /pubmed/37214970 http://dx.doi.org/10.21203/rs.3.rs-2864872/v1 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Huang, Sizhe
Liu, Xinyue
Lin, Shaoting
Glynn, Christopher
Felix, Kayla
Sahasrabudhe, Atharva
Maley, Collin
Xu, Jingyi
Chen, Weixuan
Hong, Eunji
Crosby, Alfred J.
Wang, Qianbin
Rao, Siyuan
Control of Polymers’ Amorphous-crystalline Transition for Hydrogel Bioelectronics Miniaturization and Multifunctional Integration
title Control of Polymers’ Amorphous-crystalline Transition for Hydrogel Bioelectronics Miniaturization and Multifunctional Integration
title_full Control of Polymers’ Amorphous-crystalline Transition for Hydrogel Bioelectronics Miniaturization and Multifunctional Integration
title_fullStr Control of Polymers’ Amorphous-crystalline Transition for Hydrogel Bioelectronics Miniaturization and Multifunctional Integration
title_full_unstemmed Control of Polymers’ Amorphous-crystalline Transition for Hydrogel Bioelectronics Miniaturization and Multifunctional Integration
title_short Control of Polymers’ Amorphous-crystalline Transition for Hydrogel Bioelectronics Miniaturization and Multifunctional Integration
title_sort control of polymers’ amorphous-crystalline transition for hydrogel bioelectronics miniaturization and multifunctional integration
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197780/
https://www.ncbi.nlm.nih.gov/pubmed/37214970
http://dx.doi.org/10.21203/rs.3.rs-2864872/v1
work_keys_str_mv AT huangsizhe controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration
AT liuxinyue controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration
AT linshaoting controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration
AT glynnchristopher controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration
AT felixkayla controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration
AT sahasrabudheatharva controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration
AT maleycollin controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration
AT xujingyi controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration
AT chenweixuan controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration
AT hongeunji controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration
AT crosbyalfredj controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration
AT wangqianbin controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration
AT raosiyuan controlofpolymersamorphouscrystallinetransitionforhydrogelbioelectronicsminiaturizationandmultifunctionalintegration