Cargando…
Aflibercept Suppression of Angiopoietin-2 in a Rabbit Retinal Vascular Hyperpermeability Model
PURPOSE: Anti-vascular endothelial growth factor (anti-VEGF) therapies, which attenuate the capacity of VEGF to bind to VEGF receptors, are standard-of-care options for various retinal disorders that are characterized by pathologic retinal angiogenesis and vascular permeability. Multiple receptors a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198290/ https://www.ncbi.nlm.nih.gov/pubmed/37191621 http://dx.doi.org/10.1167/tvst.12.5.17 |
Sumario: | PURPOSE: Anti-vascular endothelial growth factor (anti-VEGF) therapies, which attenuate the capacity of VEGF to bind to VEGF receptors, are standard-of-care options for various retinal disorders that are characterized by pathologic retinal angiogenesis and vascular permeability. Multiple receptors and ligands have also been reported as being involved in these pathways, including angiopoietin-1 (ANG1) and angiopoietin-2 (ANG2). METHODS: Electrochemiluminescence immunoassays were used to detect human VEGF (hVEGF), as well as rabbit ANG2 and basic fibroblast growth factor protein levels in vitreous samples derived from a study evaluating the efficacy of the anti-VEGF agents ranibizumab, aflibercept, and brolucizumab in an hVEGF165-induced rabbit retinal vascular hyperpermeability model. RESULTS: hVEGF was completely suppressed in rabbit vitreous after anti-VEGF treatment for 28 days. ANG2 protein in vitreous and ANGPT2 mRNA in retina tissue were similarly suppressed, although the anti-VEGF agents do not directly bind to ANG2. Aflibercept demonstrated the greatest inhibitory effect in ANG2 levels in vitreous, which correlated with strong, durable suppression of intraocular hVEGF levels. CONCLUSIONS: This study explored the effects of anti-VEGF therapies beyond direct binding of VEGF by evaluating protein levels and the expression of target genes involved in angiogenesis and associated molecular mechanisms in the rabbit retina and choroid. TRANSLATIONAL RELEVANCE: In vivo data suggest that anti-VEGF agents currently used for the treatment of retinal diseases could provide beneficial effects beyond direct binding of VEGF, including suppression of ANG2 protein and ANGPT2 mRNA. |
---|