Cargando…
Discovery of Partial Differential Equations from Highly Noisy and Sparse Data with Physics-Informed Information Criterion
Data-driven discovery of partial differential equations (PDEs) has recently made tremendous progress, and many canonical PDEs have been discovered successfully for proof of concept. However, determining the most proper PDE without prior references remains challenging in terms of practical applicatio...
Autores principales: | Xu, Hao, Zeng, Junsheng, Zhang, Dongxiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198462/ https://www.ncbi.nlm.nih.gov/pubmed/37214196 http://dx.doi.org/10.34133/research.0147 |
Ejemplares similares
-
Sparse-Aware Bias-Compensated Adaptive Filtering Algorithms Using the Maximum Correntropy Criterion for Sparse System Identification with Noisy Input
por: Ma, Wentao, et al.
Publicado: (2018) -
An improved sparse identification of nonlinear dynamics with Akaike information criterion and group sparsity
por: Dong, Xin, et al.
Publicado: (2022) -
Neural ordinary differential equations with irregular and noisy data
por: Goyal, Pawan, et al.
Publicado: (2023) -
Data-driven discovery of partial differential equations
por: Rudy, Samuel H., et al.
Publicado: (2017) -
Computational Phenotype Discovery Using Unsupervised Feature Learning over Noisy, Sparse, and Irregular Clinical Data
por: Lasko, Thomas A., et al.
Publicado: (2013)