Cargando…
A TTFS-based energy and utilization efficient neuromorphic CNN accelerator
Spiking neural networks (SNNs), which are a form of neuromorphic, brain-inspired AI, have the potential to be a power-efficient alternative to artificial neural networks (ANNs). Spikes that occur in SNN systems, also known as activations, tend to be extremely sparse, and low in number. This minimize...
Autores principales: | Yu, Miao, Xiang, Tingting, P., Srivatsa, Chu, Kyle Timothy Ng, Amornpaisannon, Burin, Tavva, Yaswanth, Miriyala, Venkata Pavan Kumar, Carlson, Trevor E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198466/ https://www.ncbi.nlm.nih.gov/pubmed/37214405 http://dx.doi.org/10.3389/fnins.2023.1121592 |
Ejemplares similares
-
TTFs nonsymmetrically fused with alkylthiophenic moieties
por: Silva, Rafaela A L, et al.
Publicado: (2015) -
HFNet: A CNN Architecture Co-designed for Neuromorphic Hardware With a Crossbar Array of Synapses
por: Gopalakrishnan, Roshan, et al.
Publicado: (2020) -
A Scalable Approach to Modeling on Accelerated Neuromorphic Hardware
por: Müller, Eric, et al.
Publicado: (2022) -
Benchmarking neuromorphic systems with Nengo
por: Bekolay, Trevor, et al.
Publicado: (2015) -
Is Neuromorphic MNIST Neuromorphic? Analyzing the Discriminative Power of Neuromorphic Datasets in the Time Domain
por: Iyer, Laxmi R., et al.
Publicado: (2021)