Cargando…
A robust dual gene ON–OFF toggle directed by two independent promoter–degron pairs
Switching genes on and off on cue is a cornerstone for understanding gene functions. One contemporary approach for loss-of-function studies of essential genes involves CRISPR-mediated knockout of the endogenous locus in conjunction with the expression of a rescue construct, which can subsequently be...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198621/ https://www.ncbi.nlm.nih.gov/pubmed/36995025 http://dx.doi.org/10.1242/jcs.260754 |
Sumario: | Switching genes on and off on cue is a cornerstone for understanding gene functions. One contemporary approach for loss-of-function studies of essential genes involves CRISPR-mediated knockout of the endogenous locus in conjunction with the expression of a rescue construct, which can subsequently be turned off to produce a gene inactivation effect in mammalian cell lines. A broadening of this approach would involve simultaneously switching on a second construct to interrogate the functions of a gene in the pathway. In this study, we developed a pair of switches that were independently controlled by both inducible promoters and degrons, enabling the toggling between two constructs with comparable kinetics and tightness. The gene-OFF switch was based on TRE transcriptional control coupled with auxin-induced degron-mediated proteolysis. A second independently controlled gene-ON switch was based on a modified ecdysone promoter and mutated FKBP12-derived destabilization domain degron, allowing acute and tuneable gene activation. This platform facilitates efficient generation of knockout cell lines containing a two-gene switch that is regulated tightly and can be flipped within a fraction of the time of a cell cycle. |
---|