Cargando…
Dimension reduction of dynamics on modular and heterogeneous directed networks
Dimension reduction is a common strategy to study nonlinear dynamical systems composed by a large number of variables. The goal is to find a smaller version of the system whose time evolution is easier to predict while preserving some of the key dynamical features of the original system. Finding suc...
Autores principales: | Vegué, Marina, Thibeault, Vincent, Desrosiers, Patrick, Allard, Antoine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198746/ https://www.ncbi.nlm.nih.gov/pubmed/37215634 http://dx.doi.org/10.1093/pnasnexus/pgad150 |
Ejemplares similares
-
Dimension matters when modeling network communities in hyperbolic spaces
por: Désy, Béatrice, et al.
Publicado: (2023) -
Active subspaces: emerging ideas for dimension reduction in parameter studies
por: Constantine, Paul G
Publicado: (2015) -
Hierarchical modular granular neural networks with fuzzy aggregation
por: Sanchez, Daniela, et al.
Publicado: (2016) -
Dynamics of heterogeneous materials
por: Nesterenko, Vitali F
Publicado: (2001) -
Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition
por: Melin, Patricia
Publicado: (2012)