Cargando…

Intratumoral tertiary lymphoid structures promote patient survival and immunotherapy response in head neck squamous cell carcinoma

Tertiary lymphoid structures (TLSs) hold the potential role in the prediction of immunotherapy response in several clinical trials. TLSs in head neck squamous cell carcinoma (HNSCC) have been investigated through IHC analysis, whereas there is no TLS gene signature to evaluate the level of TLS neoge...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zhonglong, Meng, Xiaoyan, Tang, Xiao, Zou, Weili, He, Yue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198854/
https://www.ncbi.nlm.nih.gov/pubmed/36481914
http://dx.doi.org/10.1007/s00262-022-03310-5
Descripción
Sumario:Tertiary lymphoid structures (TLSs) hold the potential role in the prediction of immunotherapy response in several clinical trials. TLSs in head neck squamous cell carcinoma (HNSCC) have been investigated through IHC analysis, whereas there is no TLS gene signature to evaluate the level of TLS neogenesis. We here proposed a TLS signature containing 13 chemokines and determined TLS-hi and TLS-low groups in HNSCC samples from The Cancer Genome Atlas. TLS-hi condition signified a better overall survival. A more inflamed immune infiltrative landscape was identified in the TLS-hi tumors characterized by higher proportion of T cells, TCR/BCR activation and antigen processing. High level of TLSs has a determined role in the clinical significance of T cells. Interesting discovery was that innate lymphoid cells and cancer-associated fibroblasts were positively associated with TLS neogenesis in TME of HNSCC. Furthermore, by integrated TLSs with stromal cells and score, immune cells and score, TMB and malignant cells, we proposed a novel HNSCC TME classifications (HNSCC-TCs 1–5), unravelling the counteracted role of stromal cells and score in inflamed immune landscape, which may provide a novel stromal targeted modality in HNSCC therapy. Finally, we verified that TLS statue is an ideal predictor for immune checkpoint blockade immunotherapy. Current study indicated that the TLSs serve as a novel prognostic biomarker and predictor for immunotherapy, which may provide directions to the current investigations on immunotherapeutic strategies for HNSCC. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00262-022-03310-5.