Cargando…
Peracetic acid as a disinfectant for wastewater reuse — Regulation (EU) 2020/741 application on a pilot-scale
Water scarcity affects already a large part of the world's population. To overcome this situation, water management is needed, and wastewater reuse must be implemented and included as a new approach. To achieve that objective water quality must comply with the parameters established in the Regu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198923/ https://www.ncbi.nlm.nih.gov/pubmed/37208521 http://dx.doi.org/10.1007/s10661-023-11313-7 |
Sumario: | Water scarcity affects already a large part of the world's population. To overcome this situation, water management is needed, and wastewater reuse must be implemented and included as a new approach. To achieve that objective water quality must comply with the parameters established in the Regulation (EU) 2020/741 of the European Parliament and the Council of the European Union and new treatment solutions have to be developed. The main goal of this pilot study was to evaluate the peracetic acid (PAA) disinfection efficiency in a real wastewater treatment plant (WWTP) in order to accomplish the wastewater reuse objective. To this end, six disinfection conditions were studied, three PAA doses (5, 10, and 15) and three contact times (5, 10, and 15) based on the commonly used disinfection operational conditions in real WWTP. Comparing the Total Suspended Solids (TSS), turbidity, Biological Oxygen Demand (BOD5) and Escherichia coli content, after and before the disinfection step, was possible to conclude that PAA ensures the Regulation (EU) 2020/741 requirements and that the disinfected effluent can be reused for several uses. All the conditions in which the PAA dose was 15 mg/L and the condition with 10 mg/L of PAA with a contact time of 15 min were the most promising, presenting the second highest water quality class achieved. The results of this study illustrate the potential of PAA as an alternative disinfectant for wastewater treatment and, bring it closer to the water reuse objective by presenting several possibilities for water uses. |
---|