Cargando…

A rapid theta network mechanism for flexible information encoding

Flexible behavior requires gating mechanisms that encode only task-relevant information in working memory. Extant literature supports a theoretical division of labor whereby lateral frontoparietal interactions underlie information maintenance and the striatum enacts the gate. Here, we reveal neocort...

Descripción completa

Detalles Bibliográficos
Autores principales: Johnson, Elizabeth L., Lin, Jack J., King-Stephens, David, Weber, Peter B., Laxer, Kenneth D., Saez, Ignacio, Girgis, Fady, D’Esposito, Mark, Knight, Robert T., Badre, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198978/
https://www.ncbi.nlm.nih.gov/pubmed/37208373
http://dx.doi.org/10.1038/s41467-023-38574-7
_version_ 1785044833413365760
author Johnson, Elizabeth L.
Lin, Jack J.
King-Stephens, David
Weber, Peter B.
Laxer, Kenneth D.
Saez, Ignacio
Girgis, Fady
D’Esposito, Mark
Knight, Robert T.
Badre, David
author_facet Johnson, Elizabeth L.
Lin, Jack J.
King-Stephens, David
Weber, Peter B.
Laxer, Kenneth D.
Saez, Ignacio
Girgis, Fady
D’Esposito, Mark
Knight, Robert T.
Badre, David
author_sort Johnson, Elizabeth L.
collection PubMed
description Flexible behavior requires gating mechanisms that encode only task-relevant information in working memory. Extant literature supports a theoretical division of labor whereby lateral frontoparietal interactions underlie information maintenance and the striatum enacts the gate. Here, we reveal neocortical gating mechanisms in intracranial EEG patients by identifying rapid, within-trial changes in regional and inter-regional activities that predict subsequent behavioral outputs. Results first demonstrate information accumulation mechanisms that extend prior fMRI (i.e., regional high-frequency activity) and EEG evidence (inter-regional theta synchrony) of distributed neocortical networks in working memory. Second, results demonstrate that rapid changes in theta synchrony, reflected in changing patterns of default mode network connectivity, support filtering. Graph theoretical analyses further linked filtering in task-relevant information and filtering out irrelevant information to dorsal and ventral attention networks, respectively. Results establish a rapid neocortical theta network mechanism for flexible information encoding, a role previously attributed to the striatum.
format Online
Article
Text
id pubmed-10198978
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101989782023-05-21 A rapid theta network mechanism for flexible information encoding Johnson, Elizabeth L. Lin, Jack J. King-Stephens, David Weber, Peter B. Laxer, Kenneth D. Saez, Ignacio Girgis, Fady D’Esposito, Mark Knight, Robert T. Badre, David Nat Commun Article Flexible behavior requires gating mechanisms that encode only task-relevant information in working memory. Extant literature supports a theoretical division of labor whereby lateral frontoparietal interactions underlie information maintenance and the striatum enacts the gate. Here, we reveal neocortical gating mechanisms in intracranial EEG patients by identifying rapid, within-trial changes in regional and inter-regional activities that predict subsequent behavioral outputs. Results first demonstrate information accumulation mechanisms that extend prior fMRI (i.e., regional high-frequency activity) and EEG evidence (inter-regional theta synchrony) of distributed neocortical networks in working memory. Second, results demonstrate that rapid changes in theta synchrony, reflected in changing patterns of default mode network connectivity, support filtering. Graph theoretical analyses further linked filtering in task-relevant information and filtering out irrelevant information to dorsal and ventral attention networks, respectively. Results establish a rapid neocortical theta network mechanism for flexible information encoding, a role previously attributed to the striatum. Nature Publishing Group UK 2023-05-19 /pmc/articles/PMC10198978/ /pubmed/37208373 http://dx.doi.org/10.1038/s41467-023-38574-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Johnson, Elizabeth L.
Lin, Jack J.
King-Stephens, David
Weber, Peter B.
Laxer, Kenneth D.
Saez, Ignacio
Girgis, Fady
D’Esposito, Mark
Knight, Robert T.
Badre, David
A rapid theta network mechanism for flexible information encoding
title A rapid theta network mechanism for flexible information encoding
title_full A rapid theta network mechanism for flexible information encoding
title_fullStr A rapid theta network mechanism for flexible information encoding
title_full_unstemmed A rapid theta network mechanism for flexible information encoding
title_short A rapid theta network mechanism for flexible information encoding
title_sort rapid theta network mechanism for flexible information encoding
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198978/
https://www.ncbi.nlm.nih.gov/pubmed/37208373
http://dx.doi.org/10.1038/s41467-023-38574-7
work_keys_str_mv AT johnsonelizabethl arapidthetanetworkmechanismforflexibleinformationencoding
AT linjackj arapidthetanetworkmechanismforflexibleinformationencoding
AT kingstephensdavid arapidthetanetworkmechanismforflexibleinformationencoding
AT weberpeterb arapidthetanetworkmechanismforflexibleinformationencoding
AT laxerkennethd arapidthetanetworkmechanismforflexibleinformationencoding
AT saezignacio arapidthetanetworkmechanismforflexibleinformationencoding
AT girgisfady arapidthetanetworkmechanismforflexibleinformationencoding
AT despositomark arapidthetanetworkmechanismforflexibleinformationencoding
AT knightrobertt arapidthetanetworkmechanismforflexibleinformationencoding
AT badredavid arapidthetanetworkmechanismforflexibleinformationencoding
AT johnsonelizabethl rapidthetanetworkmechanismforflexibleinformationencoding
AT linjackj rapidthetanetworkmechanismforflexibleinformationencoding
AT kingstephensdavid rapidthetanetworkmechanismforflexibleinformationencoding
AT weberpeterb rapidthetanetworkmechanismforflexibleinformationencoding
AT laxerkennethd rapidthetanetworkmechanismforflexibleinformationencoding
AT saezignacio rapidthetanetworkmechanismforflexibleinformationencoding
AT girgisfady rapidthetanetworkmechanismforflexibleinformationencoding
AT despositomark rapidthetanetworkmechanismforflexibleinformationencoding
AT knightrobertt rapidthetanetworkmechanismforflexibleinformationencoding
AT badredavid rapidthetanetworkmechanismforflexibleinformationencoding