Cargando…
Bidirectional meta-Kronecker factored optimizer and Hausdorff distance loss for few-shot medical image segmentation
To increase the accuracy of medical image analysis using supervised learning-based AI technology, a large amount of accurately labeled training data is required. However, the supervised learning approach may not be applicable to real-world medical imaging due to the lack of labeled data, the privacy...
Autores principales: | Kim, Yeongjoon, Kang, Donggoo, Mok, Yeongheon, Kwon, Sunkyu, Paik, Joonki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199045/ https://www.ncbi.nlm.nih.gov/pubmed/37208448 http://dx.doi.org/10.1038/s41598-023-35276-4 |
Ejemplares similares
-
Gromov-Hausdorff distance for quantum metric spaces, matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance
por: Rieffel, Marc A
Publicado: (2004) -
Hugo Kronecker
Publicado: (1939) -
Bidirectional matching and aggregation network for few-shot relation extraction
por: Wei, Zhongcheng, et al.
Publicado: (2023) -
On the usage of average Hausdorff distance for segmentation performance assessment: hidden error when used for ranking
por: Aydin, Orhun Utku, et al.
Publicado: (2021) -
Hausdorff approximations
por: Beer, Gerald
Publicado: (1990)