Cargando…
VegAnn, Vegetation Annotation of multi-crop RGB images acquired under diverse conditions for segmentation
Applying deep learning to images of cropping systems provides new knowledge and insights in research and commercial applications. Semantic segmentation or pixel-wise classification, of RGB images acquired at the ground level, into vegetation and background is a critical step in the estimation of sev...
Autores principales: | Madec, Simon, Irfan, Kamran, Velumani, Kaaviya, Baret, Frederic, David, Etienne, Daubige, Gaetan, Samatan, Lucas Bernigaud, Serouart, Mario, Smith, Daniel, James, Chrisbin, Camacho, Fernando, Guo, Wei, De Solan, Benoit, Chapman, Scott C., Weiss, Marie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199053/ https://www.ncbi.nlm.nih.gov/pubmed/37208401 http://dx.doi.org/10.1038/s41597-023-02098-y |
Ejemplares similares
-
SegVeg: Segmenting RGB Images into Green and Senescent Vegetation by Combining Deep and Shallow Methods
por: Serouart, Mario, et al.
Publicado: (2022) -
Analyzing Changes in Maize Leaves Orientation due to GxExM Using an Automatic Method from RGB Images
por: Serouart, Mario, et al.
Publicado: (2023) -
Estimates of Maize Plant Density from UAV RGB Images Using Faster-RCNN Detection Model: Impact of the Spatial Resolution
por: Velumani, K., et al.
Publicado: (2021) -
Leaf-rolling in maize crops: from leaf scoring to canopy-level measurements for phenotyping
por: Baret, Frederic, et al.
Publicado: (2018) -
Helicopter-borne RGB orthomosaics and photogrammetric digital elevation models from the MOSAiC Expedition
por: Neckel, Niklas, et al.
Publicado: (2023)