Cargando…

FAIR in action - a flexible framework to guide FAIRification

The COVID-19 pandemic has highlighted the need for FAIR (Findable, Accessible, Interoperable, and Reusable) data more than any other scientific challenge to date. We developed a flexible, multi-level, domain-agnostic FAIRification framework, providing practical guidance to improve the FAIRness for b...

Descripción completa

Detalles Bibliográficos
Autores principales: Welter, Danielle, Juty, Nick, Rocca-Serra, Philippe, Xu, Fuqi, Henderson, David, Gu, Wei, Strubel, Jolanda, Giessmann, Robert T., Emam, Ibrahim, Gadiya, Yojana, Abbassi-Daloii, Tooba, Alharbi, Ebtisam, Gray, Alasdair J. G., Courtot, Melanie, Gribbon, Philip, Ioannidis, Vassilios, Reilly, Dorothy S., Lynch, Nick, Boiten, Jan-Willem, Satagopam, Venkata, Goble, Carole, Sansone, Susanna-Assunta, Burdett, Tony
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199076/
https://www.ncbi.nlm.nih.gov/pubmed/37208349
http://dx.doi.org/10.1038/s41597-023-02167-2
Descripción
Sumario:The COVID-19 pandemic has highlighted the need for FAIR (Findable, Accessible, Interoperable, and Reusable) data more than any other scientific challenge to date. We developed a flexible, multi-level, domain-agnostic FAIRification framework, providing practical guidance to improve the FAIRness for both existing and future clinical and molecular datasets. We validated the framework in collaboration with several major public-private partnership projects, demonstrating and delivering improvements across all aspects of FAIR and across a variety of datasets and their contexts. We therefore managed to establish the reproducibility and far-reaching applicability of our approach to FAIRification tasks.