Cargando…

Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis

The goal of this numerical simulation is to visualize the electroosmotic flow of immiscible fluids through a porous medium in vertical annular microtubes. The inner region (Region I) is filled with an electrically conducting hybrid nanofluid while an electrically conducting Jeffrey fluid is flowing...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdelsalam, Sara I., Alsharif, Abdullah Madhi, Abd Elmaboud, Y., Abdellateef, A.I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199193/
https://www.ncbi.nlm.nih.gov/pubmed/37215931
http://dx.doi.org/10.1016/j.heliyon.2023.e15916
_version_ 1785044879243476992
author Abdelsalam, Sara I.
Alsharif, Abdullah Madhi
Abd Elmaboud, Y.
Abdellateef, A.I.
author_facet Abdelsalam, Sara I.
Alsharif, Abdullah Madhi
Abd Elmaboud, Y.
Abdellateef, A.I.
author_sort Abdelsalam, Sara I.
collection PubMed
description The goal of this numerical simulation is to visualize the electroosmotic flow of immiscible fluids through a porous medium in vertical annular microtubes. The inner region (Region I) is filled with an electrically conducting hybrid nanofluid while an electrically conducting Jeffrey fluid is flowing in the second region (Region II). The chosen nanofluid is kerosene-based and the nanoparticles ([Formula: see text]- [Formula: see text]) are of a spherical shape. A strong zeta potential is taken into account and the electroosmotic velocity in the two layers is considered too. The annular microtubes are subjected to an external magnetic field and an electric field. The linked nonlinear governing equations with initial, interface and boundary conditions are solved using the finite difference method. The wall zeta potential and EDL thickness on the electric potential distribution, the velocity profile, the volumetric flow rate and the heat transfer are investigated versus the parameters under consideration. Graphs have been used to describe the numerical results of numerous emerging factors. It has been noticed that the temperature is the least for the clear fluid than the that of the non-clear one. Due to the fact that oil-based nanofluids are utilized to improve the stability and thermophysical characteristics of nanofluids when they are subjected to high temperatures, the proposed study presents a mathematical assessment that is sought to be useful in oil-based nanoflows' applications.
format Online
Article
Text
id pubmed-10199193
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-101991932023-05-21 Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis Abdelsalam, Sara I. Alsharif, Abdullah Madhi Abd Elmaboud, Y. Abdellateef, A.I. Heliyon Research Article The goal of this numerical simulation is to visualize the electroosmotic flow of immiscible fluids through a porous medium in vertical annular microtubes. The inner region (Region I) is filled with an electrically conducting hybrid nanofluid while an electrically conducting Jeffrey fluid is flowing in the second region (Region II). The chosen nanofluid is kerosene-based and the nanoparticles ([Formula: see text]- [Formula: see text]) are of a spherical shape. A strong zeta potential is taken into account and the electroosmotic velocity in the two layers is considered too. The annular microtubes are subjected to an external magnetic field and an electric field. The linked nonlinear governing equations with initial, interface and boundary conditions are solved using the finite difference method. The wall zeta potential and EDL thickness on the electric potential distribution, the velocity profile, the volumetric flow rate and the heat transfer are investigated versus the parameters under consideration. Graphs have been used to describe the numerical results of numerous emerging factors. It has been noticed that the temperature is the least for the clear fluid than the that of the non-clear one. Due to the fact that oil-based nanofluids are utilized to improve the stability and thermophysical characteristics of nanofluids when they are subjected to high temperatures, the proposed study presents a mathematical assessment that is sought to be useful in oil-based nanoflows' applications. Elsevier 2023-05-08 /pmc/articles/PMC10199193/ /pubmed/37215931 http://dx.doi.org/10.1016/j.heliyon.2023.e15916 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Abdelsalam, Sara I.
Alsharif, Abdullah Madhi
Abd Elmaboud, Y.
Abdellateef, A.I.
Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis
title Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis
title_full Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis
title_fullStr Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis
title_full_unstemmed Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis
title_short Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis
title_sort assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199193/
https://www.ncbi.nlm.nih.gov/pubmed/37215931
http://dx.doi.org/10.1016/j.heliyon.2023.e15916
work_keys_str_mv AT abdelsalamsarai assortedkerosenebasednanofluidacrossadualzoneverticalannuluswithelectroosmosis
AT alsharifabdullahmadhi assortedkerosenebasednanofluidacrossadualzoneverticalannuluswithelectroosmosis
AT abdelmaboudy assortedkerosenebasednanofluidacrossadualzoneverticalannuluswithelectroosmosis
AT abdellateefai assortedkerosenebasednanofluidacrossadualzoneverticalannuluswithelectroosmosis