Cargando…
Comparison of the output of a deep learning segmentation model for locoregional breast cancer radiotherapy trained on 2 different datasets
INTRODUCTION: The development of deep learning (DL) models for auto-segmentation is increasing and more models become commercially available. Mostly, commercial models are trained on external data. To study the effect of using a model trained on external data, compared to the same model trained on i...
Autores principales: | Bakx, Nienke, van der Sangen, Maurice, Theuws, Jacqueline, Bluemink, Hanneke, Hurkmans, Coen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199413/ https://www.ncbi.nlm.nih.gov/pubmed/37213441 http://dx.doi.org/10.1016/j.tipsro.2023.100209 |
Ejemplares similares
-
Development and evaluation of radiotherapy deep learning dose prediction models for breast cancer
por: Bakx, Nienke, et al.
Publicado: (2021) -
Evaluation of a clinically introduced deep learning model for radiotherapy treatment planning of breast cancer
por: Bakx, Nienke, et al.
Publicado: (2023) -
Reduction of heart and lung normal tissue complication probability using automatic beam angle optimization and more generic optimization objectives for breast radiotherapy
por: Bakx, Nienke, et al.
Publicado: (2021) -
Artificial intelligence based treatment planning of radiotherapy for locally advanced breast cancer
por: van de Sande, Dennis, et al.
Publicado: (2021) -
Clinical evaluation of a deep learning segmentation model including manual adjustments afterwards for locally advanced breast cancer
por: Bakx, Nienke, et al.
Publicado: (2023)