Cargando…
A scalable sparse neural network framework for rare cell type annotation of single-cell transcriptome data
Automatic cell type annotation methods are increasingly used in single-cell RNA sequencing (scRNA-seq) analysis due to their fast and precise advantages. However, current methods often fail to account for the imbalance of scRNA-seq datasets and ignore information from smaller populations, leading to...
Autores principales: | Cheng, Yuqi, Fan, Xingyu, Zhang, Jianing, Li, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199434/ https://www.ncbi.nlm.nih.gov/pubmed/37210444 http://dx.doi.org/10.1038/s42003-023-04928-6 |
Ejemplares similares
-
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science
por: Mocanu, Decebal Constantin, et al.
Publicado: (2018) -
Hierarchical Sparse Coding of Objects in Deep Convolutional Neural Networks
por: Liu, Xingyu, et al.
Publicado: (2020) -
simpleaf: A simple, flexible, and scalable framework for single-cell transcriptomics data processing using alevin-fry
por: He, Dongze, et al.
Publicado: (2023) -
Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge
por: Mukherjee, Sumit, et al.
Publicado: (2018) -
An Experimental Study on the Scalability of Recent Node Centrality Metrics in Sparse Complex Networks
por: Freund, Alexander J., et al.
Publicado: (2022)