Cargando…
Metabolomic analysis reveals the influence of HMBOX1 on RAW264.7 cells proliferation based on UPLC-MS/MS
Macrophages are important effector cells in tumor progression and immune regulation. Previously, we demonstrated that the transcription suppressor homeobox containing 1(HMBOX1) exhibits immunosuppressive activity in LPS-induced acute liver injury by impeding macrophage infiltration and activation. W...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199573/ https://www.ncbi.nlm.nih.gov/pubmed/37208615 http://dx.doi.org/10.1186/s12864-023-09361-x |
_version_ | 1785044962013872128 |
---|---|
author | Jiang, Wen Jiang, Yu Zhang, Xinghai Mu, Hongli Song, Yuanming Zhao, Hengli |
author_facet | Jiang, Wen Jiang, Yu Zhang, Xinghai Mu, Hongli Song, Yuanming Zhao, Hengli |
author_sort | Jiang, Wen |
collection | PubMed |
description | Macrophages are important effector cells in tumor progression and immune regulation. Previously, we demonstrated that the transcription suppressor homeobox containing 1(HMBOX1) exhibits immunosuppressive activity in LPS-induced acute liver injury by impeding macrophage infiltration and activation. We also observed a lower proliferation in HMBOX1-overexpressed RAW264.7 cells. However, the specific mechanism was unclear. Here, a work was performed to characterize HMBOX1 function related to cell proliferation from a metabolomics standpoint by comparing the metabolic profiles of HMBOX1-overexpressed RAW264.7 cells to those of the controls. Firstly, we assessed HMBOX1 anti-proliferation activity in RAW264.7 cells with CCK8 assay and clone formation. Then, we performed metabolomic analyses by ultra-liquid chromatography coupled with mass spectrometry to explore the potential mechanisms. Our results indicated that HMBOX1 inhibited the macrophage growth curve and clone formation ability. Metabolomic analyses showed significant changes in HMBOX1-overexpressed RAW264.7 metabolites. A total of 1312 metabolites were detected, and 185 differential metabolites were identified based on the criterion of OPLS-DA VIP > 1 and p value < 0.05. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the elevated HMBOX1 in RAW264.7 inhibited the pathways of amino acid and nucleotide metabolism. Glutamine concentrations decreased significantly in HMBOX1-overexpressed macrophages, and glutamine-related transporter SLC1A5 was also downregulated. Furthermore, SLC1A5 overexpression reversed HMBOX1 inhibition of macrophage proliferation. This study demonstrated the potential mechanism of the HMBOX1/SLC1A5 pathway in cell proliferation by regulating glutamine transportation. The results may help provide a new direction for therapeutic interventions in macrophage-related inflammatory diseases. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-023-09361-x. |
format | Online Article Text |
id | pubmed-10199573 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-101995732023-05-21 Metabolomic analysis reveals the influence of HMBOX1 on RAW264.7 cells proliferation based on UPLC-MS/MS Jiang, Wen Jiang, Yu Zhang, Xinghai Mu, Hongli Song, Yuanming Zhao, Hengli BMC Genomics Research Macrophages are important effector cells in tumor progression and immune regulation. Previously, we demonstrated that the transcription suppressor homeobox containing 1(HMBOX1) exhibits immunosuppressive activity in LPS-induced acute liver injury by impeding macrophage infiltration and activation. We also observed a lower proliferation in HMBOX1-overexpressed RAW264.7 cells. However, the specific mechanism was unclear. Here, a work was performed to characterize HMBOX1 function related to cell proliferation from a metabolomics standpoint by comparing the metabolic profiles of HMBOX1-overexpressed RAW264.7 cells to those of the controls. Firstly, we assessed HMBOX1 anti-proliferation activity in RAW264.7 cells with CCK8 assay and clone formation. Then, we performed metabolomic analyses by ultra-liquid chromatography coupled with mass spectrometry to explore the potential mechanisms. Our results indicated that HMBOX1 inhibited the macrophage growth curve and clone formation ability. Metabolomic analyses showed significant changes in HMBOX1-overexpressed RAW264.7 metabolites. A total of 1312 metabolites were detected, and 185 differential metabolites were identified based on the criterion of OPLS-DA VIP > 1 and p value < 0.05. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the elevated HMBOX1 in RAW264.7 inhibited the pathways of amino acid and nucleotide metabolism. Glutamine concentrations decreased significantly in HMBOX1-overexpressed macrophages, and glutamine-related transporter SLC1A5 was also downregulated. Furthermore, SLC1A5 overexpression reversed HMBOX1 inhibition of macrophage proliferation. This study demonstrated the potential mechanism of the HMBOX1/SLC1A5 pathway in cell proliferation by regulating glutamine transportation. The results may help provide a new direction for therapeutic interventions in macrophage-related inflammatory diseases. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-023-09361-x. BioMed Central 2023-05-19 /pmc/articles/PMC10199573/ /pubmed/37208615 http://dx.doi.org/10.1186/s12864-023-09361-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Jiang, Wen Jiang, Yu Zhang, Xinghai Mu, Hongli Song, Yuanming Zhao, Hengli Metabolomic analysis reveals the influence of HMBOX1 on RAW264.7 cells proliferation based on UPLC-MS/MS |
title | Metabolomic analysis reveals the influence of HMBOX1 on RAW264.7 cells proliferation based on UPLC-MS/MS |
title_full | Metabolomic analysis reveals the influence of HMBOX1 on RAW264.7 cells proliferation based on UPLC-MS/MS |
title_fullStr | Metabolomic analysis reveals the influence of HMBOX1 on RAW264.7 cells proliferation based on UPLC-MS/MS |
title_full_unstemmed | Metabolomic analysis reveals the influence of HMBOX1 on RAW264.7 cells proliferation based on UPLC-MS/MS |
title_short | Metabolomic analysis reveals the influence of HMBOX1 on RAW264.7 cells proliferation based on UPLC-MS/MS |
title_sort | metabolomic analysis reveals the influence of hmbox1 on raw264.7 cells proliferation based on uplc-ms/ms |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199573/ https://www.ncbi.nlm.nih.gov/pubmed/37208615 http://dx.doi.org/10.1186/s12864-023-09361-x |
work_keys_str_mv | AT jiangwen metabolomicanalysisrevealstheinfluenceofhmbox1onraw2647cellsproliferationbasedonuplcmsms AT jiangyu metabolomicanalysisrevealstheinfluenceofhmbox1onraw2647cellsproliferationbasedonuplcmsms AT zhangxinghai metabolomicanalysisrevealstheinfluenceofhmbox1onraw2647cellsproliferationbasedonuplcmsms AT muhongli metabolomicanalysisrevealstheinfluenceofhmbox1onraw2647cellsproliferationbasedonuplcmsms AT songyuanming metabolomicanalysisrevealstheinfluenceofhmbox1onraw2647cellsproliferationbasedonuplcmsms AT zhaohengli metabolomicanalysisrevealstheinfluenceofhmbox1onraw2647cellsproliferationbasedonuplcmsms |