Cargando…

Liquid-liquid phase separation: Galectin-3 in nuclear speckles and ribonucleoprotein complexes

Nuclear speckles are subcellular structures originally characterized by punctate immunofluorescence staining of the monoclonal antibody SC35, which recognizes an epitope on SRRM2 (serine/arginine repetitive matrix protein 2) and Sfrs2, a member of the SR (serine/arginine-rich) family of splicing fac...

Descripción completa

Detalles Bibliográficos
Autores principales: Voss, Patricia G., Wang, John L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199649/
https://www.ncbi.nlm.nih.gov/pubmed/37003559
http://dx.doi.org/10.1016/j.yexcr.2023.113571
Descripción
Sumario:Nuclear speckles are subcellular structures originally characterized by punctate immunofluorescence staining of the monoclonal antibody SC35, which recognizes an epitope on SRRM2 (serine/arginine repetitive matrix protein 2) and Sfrs2, a member of the SR (serine/arginine-rich) family of splicing factors. Galectin-3 co-localizes with SC35 in nuclear speckles, which represent one group of nuclear bodies that include the nucleolus, Cajal bodies and gems, paraspeckles, etc. Although they appear to have well-delineated physical boundaries, these nuclear bodies are not membrane-bound structures but represent macromolecular assemblies arising from a phenomenon called liquid-liquid phase separation. There has been much recent interest in liquid phase condensation as a newly recognized mechanism by which a cell can organize and compartmentalize subcellular structures with distinct composition. The punctate/speckled staining of galectin-3 with SC3 demonstrates their co-localization in a phase-separated body in vivo, under conditions endogenous to the cell. The purpose of the present review is to summarize the studies that document three key features of galectin-3 for its localization in liquid phase condensates: (a) an intrinsically disordered domain; (b) oligomer formation for multivalent binding; and (c) association with RNA and ribonucleoprotein complexes.