Cargando…
Benchmarking of analytical combinations for COVID-19 outcome prediction using single-cell RNA sequencing data
The advances of single-cell transcriptomic technologies have led to increasing use of single-cell RNA sequencing (scRNA-seq) data in large-scale patient cohort studies. The resulting high-dimensional data can be summarized and incorporated into patient outcome prediction models in several ways; howe...
Autores principales: | Cao, Yue, Ghazanfar, Shila, Yang, Pengyi, Yang, Jean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199760/ https://www.ncbi.nlm.nih.gov/pubmed/37096588 http://dx.doi.org/10.1093/bib/bbad159 |
Ejemplares similares
-
A benchmark study of simulation methods for single-cell RNA sequencing data
por: Cao, Yue, et al.
Publicado: (2021) -
Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data
por: Yu, Lijia, et al.
Publicado: (2022) -
IBRAP: integrated benchmarking single-cell RNA-sequencing analytical pipeline
por: Knight, Connor H, et al.
Publicado: (2023) -
scFeatures: multi-view representations of single-cell and spatial data for disease outcome prediction
por: Cao, Yue, et al.
Publicado: (2022) -
Evaluating stably expressed genes in single cells
por: Lin, Yingxin, et al.
Publicado: (2019)