Cargando…
BindingSite-AugmentedDTA: enabling a next-generation pipeline for interpretable prediction models in drug repurposing
While research into drug–target interaction (DTI) prediction is fairly mature, generalizability and interpretability are not always addressed in the existing works in this field. In this paper, we propose a deep learning (DL)-based framework, called BindingSite-AugmentedDTA, which improves drug–targ...
Autores principales: | Yousefi, Niloofar, Yazdani-Jahromi, Mehdi, Tayebi, Aida, Kolanthai, Elayaraja, Neal, Craig J, Banerjee, Tanumoy, Gosai, Agnivo, Balasubramanian, Ganesh, Seal, Sudipta, Ozmen Garibay, Ozlem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199763/ https://www.ncbi.nlm.nih.gov/pubmed/37096593 http://dx.doi.org/10.1093/bib/bbad136 |
Ejemplares similares
-
AttentionSiteDTI: an interpretable graph-based model for drug-target interaction prediction using NLP sentence-level relation classification
por: Yazdani-Jahromi, Mehdi, et al.
Publicado: (2022) -
UnbiasedDTI: Mitigating Real-World Bias of Drug-Target Interaction Prediction by Using Deep Ensemble-Balanced Learning
por: Tayebi, Aida, et al.
Publicado: (2022) -
Network analytics for drug repurposing in COVID-19
por: Siminea, Nicoleta, et al.
Publicado: (2021) -
Validation of transcriptome signature reversion for drug repurposing in oncology
por: Koudijs, Karel K M, et al.
Publicado: (2022) -
Vir2Drug: a drug repurposing framework based on protein similarities between pathogens
por: Minadakis, George, et al.
Publicado: (2022)