Cargando…
Concepts and methods for transcriptome-wide prediction of chemical messenger RNA modifications with machine learning
The expanding field of epitranscriptomics might rival the epigenome in the diversity of biological processes impacted. In recent years, the development of new high-throughput experimental and computational techniques has been a key driving force in discovering the properties of RNA modifications. Ma...
Autores principales: | Acera Mateos, Pablo, Zhou, You, Zarnack, Kathi, Eyras, Eduardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199766/ https://www.ncbi.nlm.nih.gov/pubmed/37139545 http://dx.doi.org/10.1093/bib/bbad163 |
Ejemplares similares
-
‘Artificial intelligence and machine learning in RNA biology’
por: Zarnack, Kathi, et al.
Publicado: (2023) -
PACIFIC: a lightweight deep-learning classifier of SARS-CoV-2 and co-infecting RNA viruses
por: Acera Mateos, Pablo, et al.
Publicado: (2021) -
iCLIP - Transcriptome-wide Mapping of Protein-RNA Interactions with Individual Nucleotide Resolution
por: Konig, Julian, et al.
Publicado: (2011) -
Transcriptome-Wide Annotation of m(5)C RNA Modifications Using Machine Learning
por: Song, Jie, et al.
Publicado: (2018) -
Corrigendum: Transcriptome-Wide Annotation of m(5)C RNA Modifications Using Machine Learning
por: Song, Jie, et al.
Publicado: (2018)