Cargando…
A universal framework for single-cell multi-omics data integration with graph convolutional networks
Single-cell omics data are growing at an unprecedented rate, whereas effective integration of them remains challenging due to different sequencing methods, quality, and expression pattern of each omics data. In this study, we propose a universal framework for the integration of single-cell multi-omi...
Autores principales: | Gao, Hongli, Zhang, Bin, Liu, Long, Li, Shan, Gao, Xin, Yu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199767/ https://www.ncbi.nlm.nih.gov/pubmed/36929841 http://dx.doi.org/10.1093/bib/bbad081 |
Ejemplares similares
-
Integrating multi-omics summary data using a Mendelian randomization framework
por: Jin, Chong, et al.
Publicado: (2022) -
A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping
por: Sathyanarayanan, Anita, et al.
Publicado: (2019) -
Multi-omics regulatory network inference in the presence of missing data
por: Henao, Juan D, et al.
Publicado: (2023) -
UNMF: a unified nonnegative matrix factorization for multi-dimensional omics data
por: Abe, Ko, et al.
Publicado: (2023) -
Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19
por: Tomazou, Marios, et al.
Publicado: (2021)