Cargando…
Machine learning for RNA 2D structure prediction benchmarked on experimental data
Since the 1980s, dozens of computational methods have addressed the problem of predicting RNA secondary structure. Among them are those that follow standard optimization approaches and, more recently, machine learning (ML) algorithms. The former were repeatedly benchmarked on various datasets. The l...
Autores principales: | Justyna, Marek, Antczak, Maciej, Szachniuk, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199776/ https://www.ncbi.nlm.nih.gov/pubmed/37096592 http://dx.doi.org/10.1093/bib/bbad153 |
Ejemplares similares
-
Machine-learning scoring functions trained on complexes dissimilar to the test set already outperform classical counterparts on a blind benchmark
por: Li, Hongjian, et al.
Publicado: (2021) -
IBRAP: integrated benchmarking single-cell RNA-sequencing analytical pipeline
por: Knight, Connor H, et al.
Publicado: (2023) -
Benchmarking methods for detecting differential states between conditions from multi-subject single-cell RNA-seq data
por: Junttila, Sini, et al.
Publicado: (2022) -
Benchmarks in antimicrobial peptide prediction are biased due to the selection of negative data
por: Sidorczuk, Katarzyna, et al.
Publicado: (2022) -
Benchmarking cell-type clustering methods for spatially resolved transcriptomics data
por: Cheng, Andrew, et al.
Publicado: (2022)