Cargando…
A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters
BACKGROUND: In patients with non-small cell lung cancer (NSCLC), accuracy of [(18)F]FDG-PET/CT for pretherapeutic lymph node (LN) staging is limited by false positive findings. Our aim was to evaluate machine learning with routinely obtainable variables to improve accuracy over standard visual image...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199849/ https://www.ncbi.nlm.nih.gov/pubmed/36820890 http://dx.doi.org/10.1007/s00259-023-06145-z |
_version_ | 1785045018199719936 |
---|---|
author | Rogasch, Julian M. M. Michaels, Liza Baumgärtner, Georg L. Frost, Nikolaj Rückert, Jens-Carsten Neudecker, Jens Ochsenreither, Sebastian Gerhold, Manuela Schmidt, Bernd Schneider, Paul Amthauer, Holger Furth, Christian Penzkofer, Tobias |
author_facet | Rogasch, Julian M. M. Michaels, Liza Baumgärtner, Georg L. Frost, Nikolaj Rückert, Jens-Carsten Neudecker, Jens Ochsenreither, Sebastian Gerhold, Manuela Schmidt, Bernd Schneider, Paul Amthauer, Holger Furth, Christian Penzkofer, Tobias |
author_sort | Rogasch, Julian M. M. |
collection | PubMed |
description | BACKGROUND: In patients with non-small cell lung cancer (NSCLC), accuracy of [(18)F]FDG-PET/CT for pretherapeutic lymph node (LN) staging is limited by false positive findings. Our aim was to evaluate machine learning with routinely obtainable variables to improve accuracy over standard visual image assessment. METHODS: Monocentric retrospective analysis of pretherapeutic [(18)F]FDG-PET/CT in 491 consecutive patients with NSCLC using an analog PET/CT scanner (training + test cohort, n = 385) or digital scanner (validation, n = 106). Forty clinical variables, tumor characteristics, and image variables (e.g., primary tumor and LN SUVmax and size) were collected. Different combinations of machine learning methods for feature selection and classification of N0/1 vs. N2/3 disease were compared. Ten-fold nested cross-validation was used to derive the mean area under the ROC curve of the ten test folds (“test AUC”) and AUC in the validation cohort. Reference standard was the final N stage from interdisciplinary consensus (histological results for N2/3 LNs in 96%). RESULTS: N2/3 disease was present in 190 patients (39%; training + test, 37%; validation, 46%; p = 0.09). A gradient boosting classifier (GBM) with 10 features was selected as the final model based on test AUC of 0.91 (95% confidence interval, 0.87–0.94). Validation AUC was 0.94 (0.89–0.98). At a target sensitivity of approx. 90%, test/validation accuracy of the GBM was 0.78/0.87. This was significantly higher than the accuracy based on “mediastinal LN uptake > mediastinum” (0.7/0.75; each p < 0.05) or combined PET/CT criteria (PET positive and/or LN short axis diameter > 10 mm; 0.68/0.75; each p < 0.001). Harmonization of PET images between the two scanners affected SUVmax and visual assessment of the LNs but did not diminish the AUC of the GBM. CONCLUSIONS: A machine learning model based on routinely available variables from [(18)F]FDG-PET/CT improved accuracy in mediastinal LN staging compared to established visual assessment criteria. A web application implementing this model was made available. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00259-023-06145-z. |
format | Online Article Text |
id | pubmed-10199849 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-101998492023-05-22 A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters Rogasch, Julian M. M. Michaels, Liza Baumgärtner, Georg L. Frost, Nikolaj Rückert, Jens-Carsten Neudecker, Jens Ochsenreither, Sebastian Gerhold, Manuela Schmidt, Bernd Schneider, Paul Amthauer, Holger Furth, Christian Penzkofer, Tobias Eur J Nucl Med Mol Imaging Original Article BACKGROUND: In patients with non-small cell lung cancer (NSCLC), accuracy of [(18)F]FDG-PET/CT for pretherapeutic lymph node (LN) staging is limited by false positive findings. Our aim was to evaluate machine learning with routinely obtainable variables to improve accuracy over standard visual image assessment. METHODS: Monocentric retrospective analysis of pretherapeutic [(18)F]FDG-PET/CT in 491 consecutive patients with NSCLC using an analog PET/CT scanner (training + test cohort, n = 385) or digital scanner (validation, n = 106). Forty clinical variables, tumor characteristics, and image variables (e.g., primary tumor and LN SUVmax and size) were collected. Different combinations of machine learning methods for feature selection and classification of N0/1 vs. N2/3 disease were compared. Ten-fold nested cross-validation was used to derive the mean area under the ROC curve of the ten test folds (“test AUC”) and AUC in the validation cohort. Reference standard was the final N stage from interdisciplinary consensus (histological results for N2/3 LNs in 96%). RESULTS: N2/3 disease was present in 190 patients (39%; training + test, 37%; validation, 46%; p = 0.09). A gradient boosting classifier (GBM) with 10 features was selected as the final model based on test AUC of 0.91 (95% confidence interval, 0.87–0.94). Validation AUC was 0.94 (0.89–0.98). At a target sensitivity of approx. 90%, test/validation accuracy of the GBM was 0.78/0.87. This was significantly higher than the accuracy based on “mediastinal LN uptake > mediastinum” (0.7/0.75; each p < 0.05) or combined PET/CT criteria (PET positive and/or LN short axis diameter > 10 mm; 0.68/0.75; each p < 0.001). Harmonization of PET images between the two scanners affected SUVmax and visual assessment of the LNs but did not diminish the AUC of the GBM. CONCLUSIONS: A machine learning model based on routinely available variables from [(18)F]FDG-PET/CT improved accuracy in mediastinal LN staging compared to established visual assessment criteria. A web application implementing this model was made available. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00259-023-06145-z. Springer Berlin Heidelberg 2023-02-23 2023 /pmc/articles/PMC10199849/ /pubmed/36820890 http://dx.doi.org/10.1007/s00259-023-06145-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Article Rogasch, Julian M. M. Michaels, Liza Baumgärtner, Georg L. Frost, Nikolaj Rückert, Jens-Carsten Neudecker, Jens Ochsenreither, Sebastian Gerhold, Manuela Schmidt, Bernd Schneider, Paul Amthauer, Holger Furth, Christian Penzkofer, Tobias A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters |
title | A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters |
title_full | A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters |
title_fullStr | A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters |
title_full_unstemmed | A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters |
title_short | A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters |
title_sort | machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)f]fdg-pet/ct parameters |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199849/ https://www.ncbi.nlm.nih.gov/pubmed/36820890 http://dx.doi.org/10.1007/s00259-023-06145-z |
work_keys_str_mv | AT rogaschjulianmm amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT michaelsliza amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT baumgartnergeorgl amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT frostnikolaj amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT ruckertjenscarsten amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT neudeckerjens amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT ochsenreithersebastian amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT gerholdmanuela amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT schmidtbernd amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT schneiderpaul amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT amthauerholger amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT furthchristian amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT penzkofertobias amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT rogaschjulianmm machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT michaelsliza machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT baumgartnergeorgl machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT frostnikolaj machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT ruckertjenscarsten machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT neudeckerjens machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT ochsenreithersebastian machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT gerholdmanuela machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT schmidtbernd machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT schneiderpaul machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT amthauerholger machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT furthchristian machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters AT penzkofertobias machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters |