Cargando…

A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters

BACKGROUND: In patients with non-small cell lung cancer (NSCLC), accuracy of [(18)F]FDG-PET/CT for pretherapeutic lymph node (LN) staging is limited by false positive findings. Our aim was to evaluate machine learning with routinely obtainable variables to improve accuracy over standard visual image...

Descripción completa

Detalles Bibliográficos
Autores principales: Rogasch, Julian M. M., Michaels, Liza, Baumgärtner, Georg L., Frost, Nikolaj, Rückert, Jens-Carsten, Neudecker, Jens, Ochsenreither, Sebastian, Gerhold, Manuela, Schmidt, Bernd, Schneider, Paul, Amthauer, Holger, Furth, Christian, Penzkofer, Tobias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199849/
https://www.ncbi.nlm.nih.gov/pubmed/36820890
http://dx.doi.org/10.1007/s00259-023-06145-z
_version_ 1785045018199719936
author Rogasch, Julian M. M.
Michaels, Liza
Baumgärtner, Georg L.
Frost, Nikolaj
Rückert, Jens-Carsten
Neudecker, Jens
Ochsenreither, Sebastian
Gerhold, Manuela
Schmidt, Bernd
Schneider, Paul
Amthauer, Holger
Furth, Christian
Penzkofer, Tobias
author_facet Rogasch, Julian M. M.
Michaels, Liza
Baumgärtner, Georg L.
Frost, Nikolaj
Rückert, Jens-Carsten
Neudecker, Jens
Ochsenreither, Sebastian
Gerhold, Manuela
Schmidt, Bernd
Schneider, Paul
Amthauer, Holger
Furth, Christian
Penzkofer, Tobias
author_sort Rogasch, Julian M. M.
collection PubMed
description BACKGROUND: In patients with non-small cell lung cancer (NSCLC), accuracy of [(18)F]FDG-PET/CT for pretherapeutic lymph node (LN) staging is limited by false positive findings. Our aim was to evaluate machine learning with routinely obtainable variables to improve accuracy over standard visual image assessment. METHODS: Monocentric retrospective analysis of pretherapeutic [(18)F]FDG-PET/CT in 491 consecutive patients with NSCLC using an analog PET/CT scanner (training + test cohort, n = 385) or digital scanner (validation, n = 106). Forty clinical variables, tumor characteristics, and image variables (e.g., primary tumor and LN SUVmax and size) were collected. Different combinations of machine learning methods for feature selection and classification of N0/1 vs. N2/3 disease were compared. Ten-fold nested cross-validation was used to derive the mean area under the ROC curve of the ten test folds (“test AUC”) and AUC in the validation cohort. Reference standard was the final N stage from interdisciplinary consensus (histological results for N2/3 LNs in 96%). RESULTS: N2/3 disease was present in 190 patients (39%; training + test, 37%; validation, 46%; p = 0.09). A gradient boosting classifier (GBM) with 10 features was selected as the final model based on test AUC of 0.91 (95% confidence interval, 0.87–0.94). Validation AUC was 0.94 (0.89–0.98). At a target sensitivity of approx. 90%, test/validation accuracy of the GBM was 0.78/0.87. This was significantly higher than the accuracy based on “mediastinal LN uptake > mediastinum” (0.7/0.75; each p < 0.05) or combined PET/CT criteria (PET positive and/or LN short axis diameter > 10 mm; 0.68/0.75; each p < 0.001). Harmonization of PET images between the two scanners affected SUVmax and visual assessment of the LNs but did not diminish the AUC of the GBM. CONCLUSIONS: A machine learning model based on routinely available variables from [(18)F]FDG-PET/CT improved accuracy in mediastinal LN staging compared to established visual assessment criteria. A web application implementing this model was made available. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00259-023-06145-z.
format Online
Article
Text
id pubmed-10199849
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-101998492023-05-22 A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters Rogasch, Julian M. M. Michaels, Liza Baumgärtner, Georg L. Frost, Nikolaj Rückert, Jens-Carsten Neudecker, Jens Ochsenreither, Sebastian Gerhold, Manuela Schmidt, Bernd Schneider, Paul Amthauer, Holger Furth, Christian Penzkofer, Tobias Eur J Nucl Med Mol Imaging Original Article BACKGROUND: In patients with non-small cell lung cancer (NSCLC), accuracy of [(18)F]FDG-PET/CT for pretherapeutic lymph node (LN) staging is limited by false positive findings. Our aim was to evaluate machine learning with routinely obtainable variables to improve accuracy over standard visual image assessment. METHODS: Monocentric retrospective analysis of pretherapeutic [(18)F]FDG-PET/CT in 491 consecutive patients with NSCLC using an analog PET/CT scanner (training + test cohort, n = 385) or digital scanner (validation, n = 106). Forty clinical variables, tumor characteristics, and image variables (e.g., primary tumor and LN SUVmax and size) were collected. Different combinations of machine learning methods for feature selection and classification of N0/1 vs. N2/3 disease were compared. Ten-fold nested cross-validation was used to derive the mean area under the ROC curve of the ten test folds (“test AUC”) and AUC in the validation cohort. Reference standard was the final N stage from interdisciplinary consensus (histological results for N2/3 LNs in 96%). RESULTS: N2/3 disease was present in 190 patients (39%; training + test, 37%; validation, 46%; p = 0.09). A gradient boosting classifier (GBM) with 10 features was selected as the final model based on test AUC of 0.91 (95% confidence interval, 0.87–0.94). Validation AUC was 0.94 (0.89–0.98). At a target sensitivity of approx. 90%, test/validation accuracy of the GBM was 0.78/0.87. This was significantly higher than the accuracy based on “mediastinal LN uptake > mediastinum” (0.7/0.75; each p < 0.05) or combined PET/CT criteria (PET positive and/or LN short axis diameter > 10 mm; 0.68/0.75; each p < 0.001). Harmonization of PET images between the two scanners affected SUVmax and visual assessment of the LNs but did not diminish the AUC of the GBM. CONCLUSIONS: A machine learning model based on routinely available variables from [(18)F]FDG-PET/CT improved accuracy in mediastinal LN staging compared to established visual assessment criteria. A web application implementing this model was made available. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00259-023-06145-z. Springer Berlin Heidelberg 2023-02-23 2023 /pmc/articles/PMC10199849/ /pubmed/36820890 http://dx.doi.org/10.1007/s00259-023-06145-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Original Article
Rogasch, Julian M. M.
Michaels, Liza
Baumgärtner, Georg L.
Frost, Nikolaj
Rückert, Jens-Carsten
Neudecker, Jens
Ochsenreither, Sebastian
Gerhold, Manuela
Schmidt, Bernd
Schneider, Paul
Amthauer, Holger
Furth, Christian
Penzkofer, Tobias
A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters
title A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters
title_full A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters
title_fullStr A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters
title_full_unstemmed A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters
title_short A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters
title_sort machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)f]fdg-pet/ct parameters
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199849/
https://www.ncbi.nlm.nih.gov/pubmed/36820890
http://dx.doi.org/10.1007/s00259-023-06145-z
work_keys_str_mv AT rogaschjulianmm amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT michaelsliza amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT baumgartnergeorgl amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT frostnikolaj amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT ruckertjenscarsten amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT neudeckerjens amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT ochsenreithersebastian amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT gerholdmanuela amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT schmidtbernd amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT schneiderpaul amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT amthauerholger amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT furthchristian amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT penzkofertobias amachinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT rogaschjulianmm machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT michaelsliza machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT baumgartnergeorgl machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT frostnikolaj machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT ruckertjenscarsten machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT neudeckerjens machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT ochsenreithersebastian machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT gerholdmanuela machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT schmidtbernd machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT schneiderpaul machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT amthauerholger machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT furthchristian machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters
AT penzkofertobias machinelearningtooltoimprovepredictionofmediastinallymphnodemetastasesinnonsmallcelllungcancerusingroutinelyobtainable18ffdgpetctparameters