Cargando…
A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [(18)F]FDG-PET/CT parameters
BACKGROUND: In patients with non-small cell lung cancer (NSCLC), accuracy of [(18)F]FDG-PET/CT for pretherapeutic lymph node (LN) staging is limited by false positive findings. Our aim was to evaluate machine learning with routinely obtainable variables to improve accuracy over standard visual image...
Autores principales: | Rogasch, Julian M. M., Michaels, Liza, Baumgärtner, Georg L., Frost, Nikolaj, Rückert, Jens-Carsten, Neudecker, Jens, Ochsenreither, Sebastian, Gerhold, Manuela, Schmidt, Bernd, Schneider, Paul, Amthauer, Holger, Furth, Christian, Penzkofer, Tobias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199849/ https://www.ncbi.nlm.nih.gov/pubmed/36820890 http://dx.doi.org/10.1007/s00259-023-06145-z |
Ejemplares similares
-
Inferring FDG-PET-positivity of lymph node metastases in proven lung cancer from contrast-enhanced CT using radiomics and machine learning
por: Gorodetski, Boris, et al.
Publicado: (2022) -
Asphericity of tumor FDG uptake in non-small cell lung cancer: reproducibility and implications for harmonization in multicenter studies
por: Rogasch, Julian M. M., et al.
Publicado: (2020) -
Pretherapeutic FDG-PET total metabolic tumor volume predicts response to induction therapy in pediatric Hodgkin’s lymphoma
por: Rogasch, Julian M. M., et al.
Publicado: (2018) -
Quantitative assessment of the asphericity of pretherapeutic FDG uptake as an independent predictor of outcome in NSCLC
por: Apostolova, Ivayla, et al.
Publicado: (2014) -
Reconstructed spatial resolution and contrast recovery with Bayesian penalized likelihood reconstruction (Q.Clear) for FDG-PET compared to time-of-flight (TOF) with point spread function (PSF)
por: Rogasch, Julian M., et al.
Publicado: (2020)