Cargando…
A cycle-consistent adversarial network for brain PET partial volume correction without prior anatomical information
PURPOSE: Partial volume effect (PVE) is a consequence of the limited spatial resolution of PET scanners. PVE can cause the intensity values of a particular voxel to be underestimated or overestimated due to the effect of surrounding tracer uptake. We propose a novel partial volume correction (PVC) t...
Autores principales: | Sanaat, Amirhossein, Shooli, Hossein, Böhringer, Andrew Stephen, Sadeghi, Maryam, Shiri, Isaac, Salimi, Yazdan, Ginovart, Nathalie, Garibotto, Valentina, Arabi, Hossein, Zaidi, Habib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199868/ https://www.ncbi.nlm.nih.gov/pubmed/36808000 http://dx.doi.org/10.1007/s00259-023-06152-0 |
Ejemplares similares
-
Deep‐TOF‐PET: Deep learning‐guided generation of time‐of‐flight from non‐TOF brain PET images in the image and projection domains
por: Sanaat, Amirhossein, et al.
Publicado: (2022) -
High-dimensional multinomial multiclass severity scoring of COVID-19 pneumonia using CT radiomics features and machine learning algorithms
por: Shiri, Isaac, et al.
Publicado: (2022) -
Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models’ Performance and Robustness
por: Sanaat, Amirhossein, et al.
Publicado: (2022) -
Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging
por: Sanaat, Amirhossein, et al.
Publicado: (2021) -
Deep learning-based fully automated Z-axis coverage range definition from scout scans to eliminate overscanning in chest CT imaging
por: Salimi, Yazdan, et al.
Publicado: (2021)